Forked from
toolbox / WindEnergyToolbox
383 commits behind the upstream repository.
-
Mads M. Pedersen authoredMads M. Pedersen authored
blade.py 16.75 KiB
'''
Created on 3. maj 2017
@author: mmpe
'''
import numpy as np
from wetb.hawc2.at_time_file import AtTimeFile
from wetb.hawc2.pc_file import PCFile
from wetb.hawc2.htc_file import HTCFile
from scipy.interpolate.interpolate import interp1d
import os
from wetb.utils.geometry import rad
from wetb.hawc2.st_file import StFile
from wetb.hawc2.ae_file import AEFile
from wetb.hawc2.mainbody import MainBody
# class BladeInfo(object):
# def twist(self, radius=None):
# """Aerodynamic twist [deg]. Negative when leading edge is twisted towards wind(opposite to normal definition)\n
#
# Parameters
# ---------
# radius : float or array_like, optional
# radius [m] of interest
# If None (default) the twist of all points are returned
#
# Returns
# -------
# twist [deg] : float
# """
# raise NotImplementedError()
#
# def chord(self, radius=None):
# """Aerodynamic chord
#
# Parameters
# ---------
# radius : float or array_like, optional
# radius [m] of interest
# If None (default) the twist of all points are returned
#
# Returns
# -------
# chord [m] : float
# """
# raise NotImplementedError()
#
#
#
# def c2nd(self, radius_nd):
# """Return center line position
#
# Parameters
# ---------
# radius_nd : float or array_like, optional
# non dimensional radius
#
# Returns
# -------
# x,y,z : float
# """
class H2aeroBlade(PCFile, AEFile, AtTimeFile):
"""Provide HAWC2 info about a blade
From AE file:
- chord(radius=None, set_nr=1):
- thickness(radius=None, set_nr=1)
- radius_ae(radius=None, set_nr=1)
From PC file
- CL(radius, alpha, ae_set_nr=1)
- CD(radius, alpha, ae_set_nr=1)
- CM(radius, alpha, ae_set_nr=1)
From at_time_filename
- attribute_names
- xxx(radius=None, curved_length=None) # xxx for each attribute name
- radius_curved_ac(radius=None) # Curved length of nearest/all aerodynamic calculation points
From ST file
- radius_st(radius=None, mset=1, set=1)
- xxx(radius=None, mset=1, set=1) # xxx for each of r, m, x_cg,y_cg, ri_x, ri_y, xs, ys, E, G, Ix, Iy, K, kx, ky, A, pitch, xe, ye
with template
"""
def __init__(self, htcfile=None, ae_filename=None, pc_filename=None, at_time_filename=None, blade_name=None):
if htcfile:
if isinstance(htcfile, str):
assert htcfile.lower().endswith('.htc')
htcfile = HTCFile(htcfile)
self.htcfile = htcfile
blade_name = blade_name or htcfile.aero.link[2]
at_time_filename = at_time_filename or ("output_at_time" in htcfile and os.path.join(htcfile.modelpath, htcfile.output_at_time.filename[0] + ".dat"))
pc_filename = pc_filename or os.path.join(htcfile.modelpath, htcfile.aero.pc_filename[0])
ae_filename = ae_filename or os.path.join(htcfile.modelpath, htcfile.aero.ae_filename[0])
self.hawc2_splines_data = self.hawc2_splines()
#mainbodies = [s[k] for k in s.keys() if s[k].name_ == "main_body"]
#self.mainbody_blade = [mb for mb in mainbodies if mb.name[0] == blade_name][0]
if os.path.isfile(pc_filename) and os.path.isfile(ae_filename):
AEFile.__init__(self, ae_filename)
PCFile.__init__(self, pc_filename)
blade_radius = self.ae_sets[1][-1,0]
if at_time_filename and os.path.isfile(at_time_filename):
AtTimeFile.__init__(self, at_time_filename, blade_radius)
self.curved_length = self.radius_curved_ac()[-1]
else:
self.curved_length = None
#z_nd = (np.cos(np.linspace(np.pi, np.pi*2,len(curved_length)-1))+1)/2
#self.curved_length = np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))[-1]
@property
def c2def(self):
if not hasattr(self, "_c2def"):
self._c2def = np.array([v.values[1:5] for v in self.htcfile.blade_c2_def if v.name_ == "sec"])
return self._c2def
def c2nd(self, l_nd, curved_length=True):
curve_l_nd, x, y, z, twist = self.hawc2_splines_data
if curved_length:
l_nd = (np.max([np.min([l_nd, np.ones_like(l_nd)], 0), np.zeros_like(l_nd) + self.c2def[0, 2] / self.c2def[-1, 2]], 0))
return np.array([np.interp(l_nd, curve_l_nd, xyz) for xyz in [x,y,z, twist]]).T
else:
l_nd = (np.max([np.min([l_nd, np.ones_like(l_nd)], 0), np.zeros_like(l_nd)], 0))
return np.array([np.interp(l_nd, z/z[-1], xyz) for xyz in [x,y,z, twist]]).T
def c2(self, l, curved_length=True):
if curved_length:
L = self.curved_length
else:
L = self.c2def[-1,2]
return self.c2nd(l/L, curved_length)
def hawc2_splines(self):
curve_l = np.r_[0, np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))]
curve_l_nd = curve_l / curve_l[-1]
def akima(x, y):
n = len(x)
var = np.zeros((n + 3))
z = np.zeros((n))
co = np.zeros((n, 4))
for i in range(n - 1):
var[i + 2] = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
var[n + 1] = 2 * var[n] - var[n - 1]
var[n + 2] = 2 * var[n + 1] - var[n]
var[1] = 2 * var[2] - var[3]
var[0] = 2 * var[1] - var[2]
for i in range(n):
wi1 = abs(var[i + 3] - var[i + 2])
wi = abs(var[i + 1] - var[i])
if (wi1 + wi) == 0:
z[i] = (var[i + 2] + var[i + 1]) / 2
else:
z[i] = (wi1 * var[i + 1] + wi * var[i + 2]) / (wi1 + wi)
for i in range(n - 1):
dx = x[i + 1] - x[i]
a = (z[i + 1] - z[i]) * dx
b = y[i + 1] - y[i] - z[i] * dx
co[i, 0] = y[i]
co[i, 1] = z[i]
co[i, 2] = (3 * var[i + 2] - 2 * z[i] - z[i + 1]) / dx
co[i, 3] = (z[i] + z[i + 1] - 2 * var[i + 2]) / dx ** 2
co[n - 1, 0] = y[n - 1]
co[n - 1, 1] = z[n - 1]
co[n - 1, 2] = 0
co[n - 1, 3] = 0
return co
def coef2spline(s, co):
x, y = [], []
for i, c in enumerate(co.tolist()[:-1]):
p = np.poly1d(c[::-1])
z = np.linspace(0, s[i + 1] - s[i ], 10, endpoint=i >= co.shape[0] - 2)
x.extend(s[i] + z)
y.extend(p(z))
return x,y
x, y, z, twist = [coef2spline(curve_l_nd, akima(curve_l_nd, self.c2def[:, i]))[1] for i in range(4)]
curve_l_nd = coef2spline(curve_l_nd, akima(curve_l_nd, self.c2def[:, 0]))[0]
return curve_l_nd, x, y, z, twist
def xyztwist(self, l=None, curved_length=False):
"""Return splined x,y,z and twist
Parameters
----------
l : int, float, arraylike or None, optional
Position of interest, seee curved_length\n
If None (default) all x, y, z, and twist defined in c2def
curved_length : bool, optional
- If False: l is z coordinate of section
- If True: l is curved length
Returns
-------
x,y,z,twist
"""
if l is None:
return self.c2def[:, :3]
else:
r_nd = np.linspace(0,1,1000)
if curved_length:
#curved_length = np.cumsum(np.sqrt((np.diff(self.c2nd(np.linspace(0,1,100)),1,0)[:,:3]**2).sum(1)))
return self.c2nd(l/self.radius_curved_ac()[-1])
# z_nd = (np.cos(np.linspace(np.pi, np.pi*2,len(curved_length)-1))+1)/2
# assert np.all(l>=curved_length[0]) and np.all(l<=curved_length[-1])
# return self.c2nd(r_nd[np.argmin(np.abs(curved_length-l))+1])
else:
assert np.all(l>=self.c2def[0,2]) and np.all(l<=self.c2def[-1,2])
return self.c2nd(l/self.c2def[-1, 2])
def _Cxxx(self, radius, alpha, column, ae_set_nr=1):
thickness = self.thickness(radius, ae_set_nr)
pc_set_nr = self.pc_set_nr(radius, ae_set_nr)
thicknesses, profiles = self.pc_sets[pc_set_nr]
index = np.searchsorted(thicknesses, thickness)
if index == 0:
index = 1
Cx0, Cx1 = profiles[index - 1:index + 1]
Cx0 = np.interp(alpha, Cx0[:, 0], Cx0[:, column])
Cx1 = np.interp(alpha, Cx1[:, 0], Cx1[:, column])
th0, th1 = thicknesses[index - 1:index + 1]
return Cx0 + (Cx1 - Cx0) * (thickness - th0) / (th1 - th0)
def _CxxxH2(self, radius, alpha, column, ae_set_nr=1):
thickness = self.thickness(radius, ae_set_nr)
pc_set_nr = self.pc_set_nr(radius, ae_set_nr)
thicknesses, profiles = self.pc_sets[pc_set_nr]
index = np.searchsorted(thicknesses, thickness)
if index == 0:
index = 1
Cx0, Cx1 = profiles[index - 1:index + 1]
Cx0 = np.interp(np.arange(360), Cx0[:,0]+180, Cx0[:,column])
Cx1 = np.interp(np.arange(360), Cx1[:,0]+180, Cx1[:,column])
#Cx0 = np.interp(alpha, Cx0[:, 0], Cx0[:, column])
#Cx1 = np.interp(alpha, Cx1[:, 0], Cx1[:, column])
th0, th1 = thicknesses[index - 1:index + 1]
cx = Cx0 + (Cx1 - Cx0) * (thickness - th0) / (th1 - th0)
return np.interp(alpha+180, np.arange(360), cx)
def CL(self, radius, alpha, ae_set_nr=1):
"""Lift coefficient
Parameters
---------
radius : float
radius [m]
alpha : float
Angle of attack [deg]
ae_set_nr : int optional
Aerdynamic set number, default is 1
Returns
-------
Lift coefficient : float
"""
return self._Cxxx(radius, alpha, 1, ae_set_nr)
def CL_H2(self, radius, alpha, ae_set_nr=1):
return self._CxxxH2(radius, alpha, 1, ae_set_nr)
def CD(self, radius, alpha, ae_set_nr=1):
"""Drag coefficient
Parameters
---------
radius : float
radius [m]
alpha : float
Angle of attack [deg]
ae_set_nr : int optional
Aerdynamic set number, default is 1
Returns
-------
Drag coefficient : float
"""
return self._Cxxx(radius, alpha, 2, ae_set_nr)
def CM(self, radius, alpha, ae_set_nr=1):
return self._Cxxx(radius, alpha, 3, ae_set_nr)
def plot_xz_geometry(self, plt):
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]), label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.chord(z) / 2, label='Leading edge')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) - self.chord(z) / 2, label="Trailing edge")
curve_l_nd, x, y, z, twist = self.hawc2_splines()
plt.plot(z, x, label='Hawc2spline')
def plot_yz_geometry(self, plt):
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]), label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.thickness(z) / 100 * self.chord(z) / 2, label='Suction side')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) - self.thickness(z) / 100 * self.chord(z) / 2, label="Pressure side")
curve_l_nd, x, y, z, twist = self.hawc2_splines()
plt.plot(z, y, label='Hawc2spline')
class H2Blade(H2aeroBlade, MainBody):
"""Provide HAWC2 info about a blade
From AE file:
- chord(radius=None, set_nr=1):
- thickness(radius=None, set_nr=1)
- radius_ae(radius=None, set_nr=1)
From PC file
- CL(radius, alpha, ae_set_nr=1)
- CD(radius, alpha, ae_set_nr=1)
- CM(radius, alpha, ae_set_nr=1)
From at_time_filename
- attribute_names
- xxx(radius=None, curved_length=None) # xxx for each attribute name
- radius_curved_ac(radius=None) # Curved length of nearest/all aerodynamic calculation points
From ST file
- radius_st(radius=None, mset=1, set=1)
- xxx(radius=None, mset=1, set=1) # xxx for each of r, m, x_cg,y_cg, ri_x, ri_y, xs, ys, E, G, Ix, Iy, K, kx, ky, A, pitch, xe, ye
with template
"""
def __init__(self, htcfile=None, ae_filename=None, pc_filename=None, at_time_filename=None, st_filename=None, blade_name=None):
if htcfile is not None:
if isinstance(htcfile, str):
htcfile = HTCFile(htcfile)
s = htcfile.new_htc_structure
# at_time_filename = at_time_filename or ("output_at_time" in htcfile and os.path.join(htcfile.modelpath, htcfile.output_at_time.filename[0] + ".dat"))
# pc_filename = pc_filename or os.path.join(htcfile.modelpath, htcfile.aero.pc_filename[0])
# ae_filename = ae_filename or os.path.join(htcfile.modelpath, htcfile.aero.ae_filename[0])
#
mainbodies = [s[k] for k in s.keys() if s[k].name_ == "main_body"]
if blade_name is None:
blade_name = htcfile.aero.link[2]
self.mainbody_blade = htcfile.new_htc_structure.get_subsection_by_name(blade_name)
st_filename = st_filename or os.path.join(htcfile.modelpath, self.mainbody_blade.timoschenko_input.filename[0])
MainBody.__init__(self, htcfile, blade_name)
elif st_filename and os.path.isfile(st_filename):
StFile.__init__(self, st_filename)
H2aeroBlade.__init__(self, htcfile, ae_filename=ae_filename, pc_filename=pc_filename, at_time_filename=at_time_filename, blade_name=blade_name)
# def __init__(self, htcfile, ae_filename=None, pc_filename=None, at_time_filename=None, st_filename=None, blade_name=None):
#
# if isinstance(htcfile, str):
# assert htcfile.lower().endswith('.htc')
# htcfile = HTCFile(htcfile)
#
# blade_name = blade_name or htcfile.aero.link[2]
#
# if os.path.isfile(pc_filename) and os.path.isfile(ae_filename):
# PCFile.__init__(self, pc_filename, ae_filename)
# blade_radius = self.ae_sets[1][-1,0]
#
# if os.path.isfile(at_time_filename):
# AtTimeFile.__init__(self, at_time_filename, blade_radius)
# self.curved_length = self.radius_curved_ac()[-1]
# else:
# raise NotImplementedError
# #z_nd = (np.cos(np.linspace(np.pi, np.pi*2,len(curved_length)-1))+1)/2
# #self.curved_length = np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))[-1]
#
# self.c2def = np.array([v.values[1:5] for v in mainbody_blade.c2_def if v.name_ == "sec"])
#
# self.hawc2_splines_data = self.hawc2_splines()
@property
def c2def(self):
if not hasattr(self, "_c2def"):
self._c2def = np.array([v.values[1:5] for v in self.mainbody_blade.c2_def if v.name_ == "sec"])
return self._c2def
#
# class H2aeroBlade(H2Blade):
#
# def __init__(self, at_time_filename, ae_filename, pc_filename, htc_filename):
# """
# at_time_filename: file name of at time file containing twist and chord data
# """
# PCFile.__init__(self, pc_filename, ae_filename)
# blade_radius = self.ae_sets[1][-1,0]
# AtTimeFile.__init__(self, at_time_filename, blade_radius)
#
# assert('twist' in self.attribute_names)
# htcfile = HTCFile(htc_filename)
#
#
# self.c2def = np.array([v.values[1:5] for v in htcfile.blade_c2_def if v.name_ == "sec"])
# #self._c2nd = interp1d(self.c2def[:, 2] / self.c2def[-1, 2], self.c2def[:, :3], axis=0, kind='cubic')
#
# ac_radii = self.radius_curved_ac()
# self.hawc2_splines_data = self.hawc2_splines()
# self.curved_length = np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))[-1]
#
# # c2_axis_length = np.r_[0, np.cumsum(np.sqrt((np.diff(self.c2def[:, :3], 1, 0) ** 2).sum(1)))]
# # self._c2nd = interp1d(c2_axis_length / c2_axis_length[-1], self.c2def[:, :3], axis=0, kind='cubic')
# #self._c2nd = interp1d(self.c2def[:,2]/self.c2def[-1,2], self.c2def[:, :3], axis=0, kind='cubic')
# #
# # def c2nd(self, r_nd):
# # r_nd_min = np.zeros_like(r_nd) + self.c2def[0, 2] / self.c2def[-1, 2]
# # r_nd_max = np.ones_like(r_nd)
# # r_nd = np.max([np.min([r_nd, r_nd_max], 0), r_nd_min], 0)
# # return self._c2nd(r_nd)
#