Skip to content
Snippets Groups Projects
Commit 4cb24d2b authored by Mads M. Pedersen's avatar Mads M. Pedersen
Browse files

wsp and pitot mapping moved to wind.dir_mapping.py

parent 7f05d583
No related branches found
No related tags found
No related merge requests found
......@@ -20,3 +20,5 @@ wetb/hawc2/ascii2bin/tests/test_files/Hawc2ascii_bin.dat
wetb/prepost/tests/data/demo_dlc/remote*
/wetb/fatigue_tools/rainflowcounting/compile.py
/docs/api
/htmlcov
......@@ -87,207 +87,5 @@ def std_rad(dir):
"""
return np.sqrt(1 - (np.nanmean(np.sin(dir)) ** 2 + np.nanmean(np.cos(dir)) ** 2))
def wsp_dir2uv(wsp, dir, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v
Parameters
----------
wsp : array_like
Horizontal wind speed
dir : array_like
Wind direction
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
"""
if dir_ref is None:
dir = dir[:] - mean_deg(dir[:])
else:
dir = dir[:] - dir_ref
u = np.cos(rad(dir)) * wsp[:]
v = -np.sin(rad(dir)) * wsp[:]
return np.array([u, v])
def wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v,w
Parameters
----------
wsp : array_like
- if wsp_horizontal is True: Horizontal wind speed, $\sqrt{u^2+v^2}\n
- if wsp_horizontal is False: Wind speed, $\sqrt{u^2+v^2+w^2}
dir : array_like
Wind direction
tilt : array_like
Wind tilt
wsp_horizontal : bool
See wsp
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
v wind component
"""
wsp, dir, tilt = wsp[:], dir[:], tilt[:]
if wsp_horizontal:
w = tand(tilt) * wsp
u, v = wsp_dir2uv(wsp, dir, dir_ref)
else:
w = sind(tilt) * wsp
u, v = wsp_dir2uv(np.sqrt(wsp ** 2 - w ** 2), dir, dir_ref)
return np.array([u, v, w])
def xyz2uvw(x, y, z, left_handed=True):
"""Convert sonic x,y,z measurements to u,v,w wind components
Parameters
----------
x : array_like
Sonic x component
y : array_like
Sonic x component
z : array_like
Sonic x component
left_handed : boolean
if true (default), xyz are defined in left handed coodinate system (default for some sonics)
if false, xyz are defined in normal right handed coordinate system
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
w wind component
"""
x, y, z = map(np.array, [x, y, z])
if left_handed:
y *= -1
theta = deg(np.arctan2(np.mean(y), np.mean(x)))
SV = cosd(theta) * y - sind(theta) * x
SUW = cosd(theta) * x + sind(theta) * y
#% rotation around y of tilt
tilt = deg(np.arctan2(np.mean(z), np.mean(SUW)))
SU = SUW * cosd(tilt) + z * sind(tilt);
SW = z * cosd(tilt) - SUW * sind(tilt);
return np.array([SU, SV, SW])
def rpm2rads(rpm):
return rpm * 2 * np.pi / 60
def abvrel2xyz_old(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero: Parallel to pitot tube. Positive: Flow from wind side (pressure side)
beta : array_like
Pitot tube side slip angle [rad]. Zero: Parallel to pitot tube. Positive: Flow from root side
vrel : array_like
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component towards pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
Wind component in beta plane (positive for negative beta)
"""
alpha = np.array(alpha, dtype=np.float)
beta = np.array(beta, dtype=np.float)
vrel = np.array(vrel, dtype=np.float)
sign_vsx = -((np.abs(beta) > np.pi / 2) * 2 - 1) # +1 for |beta| < 90, -1 for |beta|>90
sign_vsy = np.sign(alpha) #+ for alpha > 0
sign_vsz = -np.sign(beta) #- for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 + 1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
m = beta != 0
z = np.zeros_like(alpha)
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 + 1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
return x, y, z
def abvrel2xyz(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
x : parallel to pitot tube, direction pitot tube root to tip, i.e. normal flow gives negative x\n
y : component in alpha plane
z : component in beta plane
For typical usage where pitot tube is mounted on leading edge:\n
x: Opposite rotational direction\n
y: Direction of mean wind\n
z: From blade root to tip\n
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero for flow towards pitot tube. Positive around z-axis. I.e.
negative alpha (normal flow) gives positive y component
beta : array_like
Pitot tube side slip angle [rad]. Zero for flow towards pitot tube. Positive around y-axis. I.e.
Positive beta (normal flow due to expansion and position in front of blade) gives positive z
vrel : array_like
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component away from pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
Wind component in beta plane (positive for negative beta)
"""
alpha = np.array(alpha, dtype=np.float)
beta = np.array(beta, dtype=np.float)
vrel = np.array(vrel, dtype=np.float)
sign_vsx = ((np.abs(beta) > np.pi / 2) * 2 - 1) # -1 for |beta| < 90, +1 for |beta|>90
sign_vsy = -np.sign(alpha) #- for alpha > 0
sign_vsz = np.sign(beta) # for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 + 1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
m = beta != 0
z = np.zeros_like(alpha)
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 + 1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
return np.array([x, y, z]).T
return rpm * 2 * np.pi / 60
\ No newline at end of file
......@@ -13,8 +13,7 @@ import unittest
import wetb.gtsdf
import numpy as np
from wetb.utils.geometry import rad, deg, mean_deg, sind, cosd, std_deg, xyz2uvw, \
wsp_dir2uv, wsp_dir_tilt2uvw, tand, abvrel2xyz
from wetb.utils.geometry import rad, deg, mean_deg, sind, cosd, std_deg, tand
import os
......@@ -68,70 +67,7 @@ class TestGeometry(unittest.TestCase):
def test_std_deg_nan(self):
self.assertAlmostEqual(std_deg(np.array([0, 90, 180, 270, np.nan])), 57.296, 2)
def test_wspdir2uv(self):
u, v = wsp_dir2uv(np.array([1, 1, 1]), np.array([30, 0, 330]))
np.testing.assert_array_almost_equal(u, [0.8660, 1, 0.8660], 3)
np.testing.assert_array_almost_equal(v, [-0.5, 0, 0.5], 3)
def test_wspdir2uv_dir_ref(self):
u, v = wsp_dir2uv(np.array([1, 1, 1]), np.array([30, 0, 330]), 30)
np.testing.assert_array_almost_equal(u, [1, 0.8660, .5], 3)
np.testing.assert_array_almost_equal(v, [0, 0.5, .8660], 3)
def test_xyz2uvw(self):
u, v, w = xyz2uvw([1, 1, 0], [0, 1, 1], 0, left_handed=False)
np.testing.assert_almost_equal(u, [np.sqrt(1 / 2), np.sqrt(2), np.sqrt(1 / 2)])
np.testing.assert_almost_equal(v, [-np.sqrt(1 / 2), 0, np.sqrt(1 / 2)])
u, v, w = xyz2uvw([1, 1, 0], [0, 1, 1], 0, left_handed=True)
np.testing.assert_almost_equal(u, [np.sqrt(1 / 2), np.sqrt(2), np.sqrt(1 / 2)])
np.testing.assert_almost_equal(v, [np.sqrt(1 / 2), 0, -np.sqrt(1 / 2)])
u, v, w = xyz2uvw(np.array([-1, -1, -1]), np.array([-0.5, 0, .5]), np.array([0, 0, 0]), left_handed=False)
np.testing.assert_array_almost_equal(u, np.array([1, 1, 1]))
np.testing.assert_array_almost_equal(v, np.array([.5, 0, -.5]))
np.testing.assert_array_almost_equal(w, np.array([0, 0, 0]))
u, v, w = xyz2uvw(np.array([.5, cosd(30), 1]), np.array([sind(60), sind(30), 0]), np.array([0, 0, 0]), left_handed=False)
np.testing.assert_array_almost_equal(u, np.array([sind(60), 1, sind(60)]))
np.testing.assert_array_almost_equal(v, np.array([.5, 0, -.5]))
np.testing.assert_array_almost_equal(w, np.array([0, 0, 0]))
u, v, w = xyz2uvw(np.array([.5, cosd(30), 1]), np.array([0, 0, 0]), np.array([sind(60), sind(30), 0]), left_handed=False)
np.testing.assert_array_almost_equal(u, np.array([sind(60), 1, sind(60)]))
np.testing.assert_array_almost_equal(v, np.array([0, 0, 0]))
np.testing.assert_array_almost_equal(w, np.array([.5, 0, -.5]))
def test_wspdir2uv2(self):
time, data, info = wetb.gtsdf.load(self.tfp + "SonicDataset.hdf5")
stat, x, y, z, temp, wsp, dir, tilt = data[2:3].T #xyz is left handed
np.testing.assert_array_almost_equal(xyz2uvw(*wsp_dir2uv(wsp, dir), z=0), xyz2uvw(x, y, 0))
def test_wspdirtil2uvw(self):
time, data, info = wetb.gtsdf.load(self.tfp + "SonicDataset.hdf5")
stat, x, y, z, temp, wsp, dir, tilt = data[3:6].T #xyz is left handed
wsp = np.sqrt(wsp ** 2 + z ** 2)
np.testing.assert_array_almost_equal(xyz2uvw(*wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal=False), left_handed=False), xyz2uvw(x, y, z))
def test_wspdirtil2uvw_horizontal_wsp(self):
time, data, info = wetb.gtsdf.load(self.tfp + "SonicDataset.hdf5")
stat, x, y, z, temp, wsp, dir, tilt = data[:].T #xyz is left handed
np.testing.assert_array_almost_equal(xyz2uvw(*wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal=True), left_handed=False), xyz2uvw(x, y, z))
np.testing.assert_array_almost_equal(wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal=True, dir_ref=180), np.array([x, -y, z]), 5)
np.testing.assert_array_almost_equal(xyz2uvw(*wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal=True), left_handed=False), xyz2uvw(x, y, z))
def test_abvrel2xyz(self):
abvrel = np.array([(0., 0, 1), (30, 0, 1), (-30, 0, 1), (0, 30, 1), (0, -30, 1), (30, 30, 1), (30, 30, 2)])
abvrel[:, :2] = rad(abvrel[:, :2])
for (x, y, z), (a, b, vrel) in zip(abvrel2xyz(*abvrel.T), abvrel):
#print (deg(a), deg(b), vrel, x, y, z)
self.assertAlmostEqual(a, np.arctan(y / x))
self.assertAlmostEqual(b, np.arctan(-z / x))
self.assertAlmostEqual(vrel, np.sqrt(x ** 2 + y ** 2 + z ** 2))
if __name__ == "__main__":
#import sys;sys.argv = ['', 'Test.test_rad']
......
'''
Created on 19. dec. 2016
@author: mmpe
'''
from wetb.utils.geometry import mean_deg, rad, tand, sind, deg, cosd
import numpy as np
def wsp_dir2uv(wsp, dir, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v
Parameters
----------
wsp : array_like
Horizontal wind speed
dir : array_like
Wind direction
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
"""
if dir_ref is None:
dir = dir[:] - mean_deg(dir[:])
else:
dir = dir[:] - dir_ref
u = np.cos(rad(dir)) * wsp[:]
v = -np.sin(rad(dir)) * wsp[:]
return np.array([u, v])
def wsp_dir_tilt2uvw(wsp, dir, tilt, wsp_horizontal, dir_ref=None):
"""Convert horizontal wind speed and direction to u,v,w
Parameters
----------
wsp : array_like
- if wsp_horizontal is True: Horizontal wind speed, $\sqrt{u^2+v^2}\n
- if wsp_horizontal is False: Wind speed, $\sqrt{u^2+v^2+w^2}
dir : array_like
Wind direction
tilt : array_like
Wind tilt
wsp_horizontal : bool
See wsp
dir_ref : int or float, optional
Reference direction\n
If None, default, the mean direction is used as reference
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
v wind component
"""
wsp, dir, tilt = wsp[:], dir[:], tilt[:]
if wsp_horizontal:
w = tand(tilt) * wsp
u, v = wsp_dir2uv(wsp, dir, dir_ref)
else:
w = sind(tilt) * wsp
u, v = wsp_dir2uv(np.sqrt(wsp ** 2 - w ** 2), dir, dir_ref)
return np.array([u, v, w])
def xyz2uvw(x, y, z, left_handed=True):
"""Convert sonic x,y,z measurements to u,v,w wind components
Parameters
----------
x : array_like
Sonic x component
y : array_like
Sonic x component
z : array_like
Sonic x component
left_handed : boolean
if true (default), xyz are defined in left handed coodinate system (default for some sonics)
if false, xyz are defined in normal right handed coordinate system
Returns
-------
u : array_like
u wind component
v : array_like
v wind component
w : array_like
w wind component
"""
x, y, z = map(np.array, [x, y, z])
if left_handed:
y *= -1
theta = deg(np.arctan2(np.mean(y), np.mean(x)))
SV = cosd(theta) * y - sind(theta) * x
SUW = cosd(theta) * x + sind(theta) * y
#% rotation around y of tilt
tilt = deg(np.arctan2(np.mean(z), np.mean(SUW)))
SU = SUW * cosd(tilt) + z * sind(tilt);
SW = z * cosd(tilt) - SUW * sind(tilt);
return np.array([SU, SV, SW])
def abvrel2xyz_old(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero: Parallel to pitot tube. Positive: Flow from wind side (pressure side)
beta : array_like
Pitot tube side slip angle [rad]. Zero: Parallel to pitot tube. Positive: Flow from root side
vrel : array_like
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component towards pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
Wind component in beta plane (positive for negative beta)
"""
alpha = np.array(alpha, dtype=np.float)
beta = np.array(beta, dtype=np.float)
vrel = np.array(vrel, dtype=np.float)
sign_vsx = -((np.abs(beta) > np.pi / 2) * 2 - 1) # +1 for |beta| < 90, -1 for |beta|>90
sign_vsy = np.sign(alpha) #+ for alpha > 0
sign_vsz = -np.sign(beta) #- for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 + 1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
m = beta != 0
z = np.zeros_like(alpha)
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 + 1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
return x, y, z
def abvrel2xyz(alpha, beta, vrel):
"""Convert pitot tube alpha, beta and relative velocity to local Cartesian wind speed velocities
x : parallel to pitot tube, direction pitot tube root to tip, i.e. normal flow gives negative x\n
y : component in alpha plane
z : component in beta plane
For typical usage where pitot tube is mounted on leading edge:\n
x: Opposite rotational direction\n
y: Direction of mean wind\n
z: From blade root to tip\n
Parameters
----------
alpha : array_like
Pitot tube angle of attack [rad]. Zero for flow towards pitot tube. Positive around z-axis. I.e.
negative alpha (normal flow) gives positive y component
beta : array_like
Pitot tube side slip angle [rad]. Zero for flow towards pitot tube. Positive around y-axis. I.e.
Positive beta (normal flow due to expansion and position in front of blade) gives positive z
vrel : array_like
Pitot tube relative velocity. Positive: flow towards pitot tube
Returns
-------
x : array_like
Wind component away from pitot tube (positive for postive vrel and -90<beta<90)
y : array_like
Wind component in alpha plane (positive for positive alpha)
z : array_like
Wind component in beta plane (positive for negative beta)
"""
alpha = np.array(alpha, dtype=np.float)
beta = np.array(beta, dtype=np.float)
vrel = np.array(vrel, dtype=np.float)
sign_vsx = ((np.abs(beta) > np.pi / 2) * 2 - 1) # -1 for |beta| < 90, +1 for |beta|>90
sign_vsy = -np.sign(alpha) #- for alpha > 0
sign_vsz = np.sign(beta) # for beta>0
x = sign_vsx * np.sqrt(vrel ** 2 / (1 + np.tan(alpha) ** 2 + np.tan(beta) ** 2))
m = alpha != 0
y = np.zeros_like(alpha)
y[m] = sign_vsy[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(alpha[m])) ** 2 + 1 + (np.tan(beta[m]) / np.tan(alpha[m])) ** 2))
m = beta != 0
z = np.zeros_like(alpha)
z[m] = sign_vsz[m] * np.sqrt(vrel[m] ** 2 / ((1 / np.tan(beta[m])) ** 2 + 1 + (np.tan(alpha[m]) / np.tan(beta[m])) ** 2))
return np.array([x, y, z]).T
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment