Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
WindEnergyToolbox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
wtlib
WindEnergyToolbox
Commits
eae3d4cf
Commit
eae3d4cf
authored
6 years ago
by
David Verelst
Browse files
Options
Downloads
Patches
Plain Diff
fatigue_tools: cycle_matrix2 for different default binning strategy
parent
d7eaefb3
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
wetb/fatigue_tools/fatigue.py
+47
-2
47 additions, 2 deletions
wetb/fatigue_tools/fatigue.py
with
47 additions
and
2 deletions
wetb/fatigue_tools/fatigue.py
+
47
−
2
View file @
eae3d4cf
...
@@ -106,7 +106,7 @@ def eq_load_and_cycles(signals, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=[10 ** 6
...
@@ -106,7 +106,7 @@ def eq_load_and_cycles(signals, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=[10 ** 6
ampl_bin_mean
=
(
ampl_bin_edges
[:
-
1
]
+
ampl_bin_edges
[
1
:])
/
2
ampl_bin_mean
=
(
ampl_bin_edges
[:
-
1
]
+
ampl_bin_edges
[
1
:])
/
2
cycles
,
ampl_bin_mean
=
cycles
.
flatten
(),
ampl_bin_mean
.
flatten
()
cycles
,
ampl_bin_mean
=
cycles
.
flatten
(),
ampl_bin_mean
.
flatten
()
with
warnings
.
catch_warnings
():
with
warnings
.
catch_warnings
():
warnings
.
simplefilter
(
"
ignore
"
)
warnings
.
simplefilter
(
"
ignore
"
)
eq_loads
=
[[((
np
.
nansum
(
cycles
*
ampl_bin_mean
**
_m
)
/
_neq
)
**
(
1.
/
_m
))
for
_m
in
np
.
atleast_1d
(
m
)]
for
_neq
in
np
.
atleast_1d
(
neq
)]
eq_loads
=
[[((
np
.
nansum
(
cycles
*
ampl_bin_mean
**
_m
)
/
_neq
)
**
(
1.
/
_m
))
for
_m
in
np
.
atleast_1d
(
m
)]
for
_neq
in
np
.
atleast_1d
(
neq
)]
return
eq_loads
,
cycles
,
ampl_bin_mean
,
ampl_bin_edges
return
eq_loads
,
cycles
,
ampl_bin_mean
,
ampl_bin_edges
...
@@ -160,7 +160,7 @@ def cycle_matrix(signals, ampl_bins=10, mean_bins=10, rainflow_func=rainflow_win
...
@@ -160,7 +160,7 @@ def cycle_matrix(signals, ampl_bins=10, mean_bins=10, rainflow_func=rainflow_win
ampl_bins
=
np
.
linspace
(
0
,
1
,
num
=
ampl_bins
+
1
)
*
ampls
[
weights
>
0
].
max
()
ampl_bins
=
np
.
linspace
(
0
,
1
,
num
=
ampl_bins
+
1
)
*
ampls
[
weights
>
0
].
max
()
cycles
,
ampl_edges
,
mean_edges
=
np
.
histogram2d
(
ampls
,
means
,
[
ampl_bins
,
mean_bins
],
weights
=
weights
)
cycles
,
ampl_edges
,
mean_edges
=
np
.
histogram2d
(
ampls
,
means
,
[
ampl_bins
,
mean_bins
],
weights
=
weights
)
with
warnings
.
catch_warnings
():
with
warnings
.
catch_warnings
():
warnings
.
simplefilter
(
"
ignore
"
)
warnings
.
simplefilter
(
"
ignore
"
)
ampl_bin_sum
=
np
.
histogram2d
(
ampls
,
means
,
[
ampl_bins
,
mean_bins
],
weights
=
weights
*
ampls
)[
0
]
ampl_bin_sum
=
np
.
histogram2d
(
ampls
,
means
,
[
ampl_bins
,
mean_bins
],
weights
=
weights
*
ampls
)[
0
]
ampl_bin_mean
=
np
.
nanmean
(
ampl_bin_sum
/
np
.
where
(
cycles
,
cycles
,
np
.
nan
),
1
)
ampl_bin_mean
=
np
.
nanmean
(
ampl_bin_sum
/
np
.
where
(
cycles
,
cycles
,
np
.
nan
),
1
)
mean_bin_sum
=
np
.
histogram2d
(
ampls
,
means
,
[
ampl_bins
,
mean_bins
],
weights
=
weights
*
means
)[
0
]
mean_bin_sum
=
np
.
histogram2d
(
ampls
,
means
,
[
ampl_bins
,
mean_bins
],
weights
=
weights
*
means
)[
0
]
...
@@ -169,6 +169,51 @@ def cycle_matrix(signals, ampl_bins=10, mean_bins=10, rainflow_func=rainflow_win
...
@@ -169,6 +169,51 @@ def cycle_matrix(signals, ampl_bins=10, mean_bins=10, rainflow_func=rainflow_win
return
cycles
,
ampl_bin_mean
,
ampl_edges
,
mean_bin_mean
,
mean_edges
return
cycles
,
ampl_bin_mean
,
ampl_edges
,
mean_bin_mean
,
mean_edges
def
cycle_matrix2
(
signal
,
nrb_amp
,
nrb_mean
,
rainflow_func
=
rainflow_windap
):
"""
Same as wetb.fatigue_tools.fatigue.cycle_matrix but bin from min_amp to
max_amp instead of 0 to max_amp.
Parameters
----------
Signal : ndarray(n)
1D Raw signal array
nrb_amp : int
Number of bins for the amplitudes
nrb_mean : int
Number of bins for the means
rainflow_func : {rainflow_windap, rainflow_astm}, optional
The rainflow counting function to use (default is rainflow_windap)
Returns
-------
cycles : ndarray, shape(ampl_bins, mean_bins)
A bi-dimensional histogram of load cycles(full cycles). Amplitudes are\
histogrammed along the first dimension and mean values are histogrammed
along the second dimension.
ampl_edges : ndarray, shape(no_bins+1,n)
The amplitude bin edges
mean_edges : ndarray, shape(no_bins+1,n)
The mean bin edges
"""
bins
=
[
nrb_amp
,
nrb_mean
]
ampls
,
means
=
rainflow_func
(
signal
)
weights
=
np
.
ones_like
(
ampls
)
cycles
,
ampl_edges
,
mean_edges
=
np
.
histogram2d
(
ampls
,
means
,
bins
,
weights
=
weights
)
cycles
=
cycles
/
2
# to get full cycles
return
cycles
,
ampl_edges
,
mean_edges
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
signal1
=
np
.
array
([
-
2.0
,
0.0
,
1.0
,
0.0
,
-
3.0
,
0.0
,
5.0
,
0.0
,
-
1.0
,
0.0
,
3.0
,
0.0
,
-
4.0
,
0.0
,
4.0
,
0.0
,
-
2.0
])
signal1
=
np
.
array
([
-
2.0
,
0.0
,
1.0
,
0.0
,
-
3.0
,
0.0
,
5.0
,
0.0
,
-
1.0
,
0.0
,
3.0
,
0.0
,
-
4.0
,
0.0
,
4.0
,
0.0
,
-
2.0
])
signal2
=
signal1
*
1.1
signal2
=
signal1
*
1.1
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment