Skip to content
Snippets Groups Projects
_site.py 15.9 KiB
Newer Older
Mads M. Pedersen's avatar
Mads M. Pedersen committed
import numpy as np
import py_wake.utils.xarray_utils  # register ilk function @UnusedImport
import xarray as xr
from abc import ABC, abstractmethod
Mads M. Pedersen's avatar
Mads M. Pedersen committed

"""
suffixs:
- i: Local point (wind turbines)
- j: Local point (downstream turbines or positions)
- l: Wind directions
- k: Wind speeds
- m: Height above ground
class LocalWind(xr.Dataset):
    __slots__ = ('wd_bin_size')

    def __init__(self, x_i, y_i, h_i, wd, ws, wd_bin_size, WD=None, WS=None, TI=None, P=None):
        WD : array_like
        WS : array_like
        TI : array_like
        P : array_like
        coords = {'wd': wd, 'ws': np.atleast_1d(ws)}
        assert len(np.atleast_1d(x_i)) == len(np.atleast_1d(y_i))
        n_i = max(len(np.atleast_1d(x_i)), len(np.atleast_1d(h_i)))
        coords['i'] = np.arange(n_i)

        for k, v in [('x', x_i), ('y', y_i), ('h', h_i)]:
            if v is not None:
                coords[k] = ('i', np.zeros(n_i) + v)

        xr.Dataset.__init__(self, data_vars={k: v for k, v in [('WD', WD), ('WS', WS),
                                                               ('TI', TI), ('P', P)] if v is not None},
                            coords=coords)
        self.attrs['wd_bin_size'] = wd_bin_size

        # set localWind.WS_ilk etc.
        for k in ['WD', 'WS', 'TI', 'P', 'TI_std']:
            setattr(self.__class__, "%s_ilk" % k, property(lambda self, k=k: self[k].ilk()))

    def set_data_array(self, data_array, name, description):
        if data_array is not None:
            data_array.attrs.update({'Description': description})
            self[name] = data_array

    def set_W(self, ws, wd, ti, ws_bins, use_WS=False):
        for da, name, desc in [(ws, 'WS', 'Local free-stream wind speed [m/s]'),
                               (wd, 'WD', 'Local free-stream wind direction [deg]'),
                               (ti, 'TI', 'Local free-stream turbulence intensity')]:
            self.set_data_array(da, name, desc)

        # upper and lower bounds of wind speed bins
        WS = [self.ws, self.WS][use_WS]
        lattr = {'Description': 'Lower bound of wind speed bins [m/s]'}
        uattr = {'Description': 'Upper bound of wind speed bins [m/s]'}
        if not hasattr(ws_bins, '__len__') or len(ws_bins) != len(WS) + 1:
            if len(WS.shape) and WS.shape[-1] > 1:
                d = np.diff(WS) / 2
                ws_bins = np.maximum(np.concatenate(
                    [WS[..., :1] - d[..., :1], WS[..., :-1] + d, WS[..., -1:] + d[..., -1:]], -1), 0)
            else:
                # WS is single value
                if ws_bins is None:
                    ws_bins = 1
                ws_bins = WS.data + np.array([-ws_bins / 2, ws_bins / 2])

            self['ws_lower'] = xr.DataArray(ws_bins[..., :-1], dims=WS.dims, attrs=lattr)
            self['ws_upper'] = xr.DataArray(ws_bins[..., 1:], dims=WS.dims, attrs=uattr)
        else:
            self['ws_lower'] = xr.DataArray(ws_bins[:-1], dims=['ws'], attrs=lattr)
            self['ws_upper'] = xr.DataArray(ws_bins[1:], dims=['ws'], attrs=uattr)
class Site(ABC):
    def __init__(self, distance):
        self.distance = distance
        self.default_ws = np.arange(3, 26.)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        self.default_wd = np.arange(360)

    def get_defaults(self, wd=None, ws=None):
        if wd is None:
            wd = self.default_wd
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
            wd = np.atleast_1d(wd)
        if ws is None:
            ws = self.default_ws
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
            ws = np.atleast_1d(ws)
    def wref(self, wd, ws, ws_bins=None):
        wd, ws = self.get_defaults(wd, ws)
        WS = xr.DataArray(ws, [('ws', ws)])
        ds = self.ws_bins(WS, ws_bins)
        ds['WS'] = WS
        ds['WD'] = xr.DataArray(wd, [('wd', wd)])
        return ds

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def local_wind(self, x_i, y_i, h_i=None, wd=None, ws=None, wd_bin_size=None, ws_bins=None):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        """Local free flow wind conditions

        Parameters
        ----------
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            Local x coordinate
        y_i : array_like
            Local y coordinate
        h_i : array_like, optional
            Local h coordinate, i.e., heights above ground
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        wd : float, int or array_like, optional
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            Global wind direction(s). Override self.default_wd
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ws : float, int or array_like, optional
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            Global wind speed(s). Override self.default_ws
        wd_bin_size : int or float, optional
            Size of wind direction bins. default is size between first and
            second element in default_wd
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ws_bin : array_like or None, optional
            Wind speed bin edges
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        Returns
        -------
        LocalWind object containing:
            WD_ilk : array_like
                local free flow wind directions
            WS_ilk : array_like
                local free flow wind speeds
            TI_ilk : array_like
                local free flow turbulence intensity
            P_ilk : array_like
                Probability/weight
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        """
        wd, ws = self.get_defaults(wd, ws)
        wd_bin_size = self.wd_bin_size(wd, wd_bin_size)
        lw = LocalWind(x_i, y_i, h_i, wd, ws, wd_bin_size)
        return self._local_wind(lw, ws_bins)

    @abstractmethod
    def _local_wind(self, localWind, ws_bins=None):
        """Local free flow wind conditions

        Parameters
        ----------
        localWind  : LocalWind
            xarray dataset containing coordinates x, y, h, wd, ws
        ws_bin : array_like or None, optional
            Wind speed bin edges

        Returns
        -------
        LocalWind xarray dataset containing:
            WD : DataArray
                local free flow wind directions
            WS : DataArray
                local free flow wind speeds
            TI : DataArray
                local free flow turbulence intensity
            P : DataArray
                Probability/weight
        """
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def distances(self, src_x_i, src_y_i, src_h_i, dst_x_j, dst_y_j, dst_h_j, wd_il):
        """Calculate down/crosswind distance between source and destination points
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        Parameters
        ----------
        src_x_i : array_like
            Source x position
        src_y_i : array_like
            Source y position
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        src_h_i : array_like
            Source height above ground level
        dst_x_j : array_like
            Destination x position
        dst_y_j : array_like
            Destination y position
        dst_h_j : array_like
            Destination height above ground level
        wd_il : array_like, shape (#src, #wd)
            Local wind direction at the source points for all global wind directions


Mads M. Pedersen's avatar
Mads M. Pedersen committed
        Returns
        -------
        dw_ijl : array_like
Riccardo Riva's avatar
Riccardo Riva committed
            down wind distances. Positive downstream
Riccardo Riva's avatar
Riccardo Riva committed
            horizontal cross wind distances. Positive when the wind is in your
            back and  the turbine lies on the left.
        dh_ijl : array_like
            vertical distances
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        dw_order_indices_l : array_like
            indices that gives the downwind order of source points
        """
        return self.distance(self, src_x_i, src_y_i, src_h_i, dst_x_j, dst_y_j, dst_h_j, wd_il)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def wt2wt_distances(self, x_i, y_i, h_i, wd_il):
        return self.distances(x_i, y_i, h_i, x_i, y_i, h_i, wd_il)

    @abstractmethod
    def elevation(self, x_i, y_i):
        """Local terrain elevation (height above mean sea level)

        Parameters
        ----------
        x_i : array_like
            Local x coordinate
        y_i : array_like
            Local y coordinate

        Returns
        -------
        elevation : array_like
        """

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def wd_bin_size(self, wd, wd_bin_size=None):
        wd = np.atleast_1d(wd)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if wd_bin_size is not None:
            return wd_bin_size
        elif len(wd) > 1 and len(np.unique(np.diff(wd))) == 1:
            return wd[1] - wd[0]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
            return 360 / len(np.atleast_1d(wd))

    def ws_bins(self, WS, ws_bins=None):
        # TODO: delete function
        if not isinstance(WS, xr.DataArray):
            WS = xr.DataArray(WS, [('ws', np.atleast_1d(WS))])
        if not hasattr(ws_bins, '__len__') or len(ws_bins) != len(WS) + 1:

            if len(WS.shape) and WS.shape[-1] > 1:
                d = np.diff(WS) / 2
                ws_bins = np.maximum(np.concatenate(
                    [WS[..., :1] - d[..., :1], WS[..., :-1] + d, WS[..., -1:] + d[..., -1:]], -1), 0)
            else:
                # WS is single value
                if ws_bins is None:
                    ws_bins = 1
                ws_bins = WS.data + np.array([-ws_bins / 2, ws_bins / 2])
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
            ws_bins = np.asarray(ws_bins)
        return xr.Dataset({'ws_lower': (WS.dims, ws_bins[..., :-1]),
                           'ws_upper': (WS.dims, ws_bins[..., 1:])},
                          coords=WS.coords)

    def _sector(self, wd):
        sector = np.zeros(360, dtype=int)

        d_wd = (np.diff(np.r_[wd, wd[0]]) % 360) / 2
        assert np.all(d_wd == d_wd[0]), "Wind directions must be equidistant"
        lower = np.ceil(wd - d_wd).astype(int)
        upper = np.ceil(wd + d_wd).astype(int)
        for i, (lo, up) in enumerate(zip(lower, upper)):
            if lo < 0:
                sector[lo % 360 + 1:] = i
                lo = 0
            if up > 359:
                sector[:up % 360 + 1] = i
                up = 359
            sector[lo + 1:up + 1] = i
        return sector
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def plot_ws_distribution(self, x=0, y=0, h=70, wd=[0], include_wd_distribution=False, ax=None):
        """Plot wind speed distribution

        Parameters
        ----------
        x : int or float
            Local x coordinate
        y : int or float
            Local y coordinate
        h : int or float
            Local height above ground
        wd : int or array_like
            Wind direction(s) (one curve pr wind direction)
        include_wd_distributeion : bool, default is False
            If true, the wind speed probability distributions are multiplied by
            the wind direction probability. The sector size is set to 360 / len(wd).
            This only makes sense if the wd array is evenly distributed
        ax : pyplot or matplotlib axes object, default None

        """
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if ax is None:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            ax = plt
        ws = np.arange(0.05, 30.05, .1)
        lbl = "Wind direction: %d deg"
        if include_wd_distribution:

            lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360), ws=ws, wd_bin_size=1)
            lw.coords['sector'] = ('wd', self._sector(wd))
            P = lw.P.groupby('sector').sum()
            v = 360 / len(wd) / 2
            lbl += r"$\pm$%s deg" % ((int(v), v)[(v % 2) != 0])
        else:
            lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=wd, ws=ws, wd_bin_size=1)
            P = lw.P
            if 'ws' not in P.dims:
                P = P.broadcast_like(lw.WS).T
            P = P / P.sum('ws')  # exclude wd probability
        if 'i' in P.dims:
            P = P.squeeze('i')
        for wd, p in zip(wd, P):
            ax.plot(ws, p * 10, label=lbl % wd)
            ax.xlabel('Wind speed [m/s]')
            ax.ylabel('Probability')
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        ax.legend(loc=1)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def plot_wd_distribution(self, x=0, y=0, h=70, n_wd=12, ws_bins=None, ax=None):
        """Plot wind direction (and speed) distribution

        Parameters
        ----------
        x : int or float
            Local x coordinate
        y : int or float
            Local y coordinate
        h : int or float
            Local height above ground
        n_wd : int
            Number of wind direction sectors
        ws_bins : None, int or array_like, default is None
            Splits the wind direction sector pies into different colors to show
            the probability of different wind speeds\n
            If int, number of wind speed bins in the range 0-30\n
            If array_like, limits of the wind speed bins limited by ws_bins,
            e.g. [0,10,20], will show 0-10 m/wd_bin_size and 10-20 m/wd_bin_size
        ax : pyplot or matplotlib axes object, default None
        """
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if ax is None:
            ax = plt
        assert 360 % n_wd == 0

        wd_bin_size = 360 // n_wd
        wd = np.arange(0, 360, wd_bin_size)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        theta = wd / 180 * np.pi
        if not ax.__class__.__name__ == 'PolarAxesSubplot':
            if hasattr(ax, 'subplot'):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                ax = ax.subplot(111, projection='polar')
            else:
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                ax = ax.figure.add_subplot(111, projection='polar')
        ax.set_theta_direction(-1)
        ax.set_theta_offset(np.pi / 2.0)

        if ws_bins is None:
            if any(['ws' in v.dims for v in self.ds.data_vars.values()]):
                lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360), wd_bin_size=1)
                lw['P'] = lw.P.sum('ws')
                lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360),
                                     ws=[100], ws_bins=[0, 200], wd_bin_size=1)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        else:
            if not hasattr(ws_bins, '__len__'):
                ws_bins = np.linspace(0, 30, ws_bins)
            else:
                ws_bins = np.asarray(ws_bins)
            ws = ((ws_bins[1:] + ws_bins[:-1]) / 2)
            lw = self.local_wind(x_i=x, y_i=y, h_i=h, wd=np.arange(360), ws=ws, wd_bin_size=1)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        lw.coords['sector'] = ('wd', self._sector(wd))
        p = lw.P.groupby('sector').sum()
        if 'i' in p.dims:
            p = p.squeeze('i')
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        if ws_bins is None or 'ws' not in p.dims:
            if 'ws' in p.dims:
                p = p.squeeze('ws')
            ax.bar(theta, p.data, width=np.deg2rad(wd_bin_size), bottom=0.0)
        else:
            p = p.T
            start_p = np.vstack([np.zeros_like(p[:1]), p.cumsum('ws')[:-1]])
            for ws1, ws2, p_ws0, p_ws in zip(lw.ws_lower.data, lw.ws_upper.data, start_p, p):
                ax.bar(theta, p_ws, width=np.deg2rad(wd_bin_size), bottom=p_ws0,
                       label="%s-%s m/s" % (ws1, ws2))
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            ax.legend(bbox_to_anchor=(1.15, 1.1))

        ax.set_rlabel_position(-22.5)  # Move radial labels away from plotted line
        ax.grid(True)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed

from py_wake.site import xrsite  # @NoMove # nopep8
UniformSite = xrsite.UniformSite
UniformWeibullSite = xrsite.UniformWeibullSite
def get_sector_xr(v, name):
    if isinstance(v, (int, float)):
        return xr.DataArray(v, coords=[], name=name)
    v = np.r_[v, np.atleast_1d(v)[0]]
    return xr.DataArray(v, coords=[('wd', np.linspace(0, 360, len(v)))], name=name)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
def main():
    if __name__ == '__main__':
        f = [0.035972, 0.039487, 0.051674, 0.070002, 0.083645, 0.064348,
             0.086432, 0.117705, 0.151576, 0.147379, 0.10012, 0.05166]
        A = [9.176929, 9.782334, 9.531809, 9.909545, 10.04269, 9.593921,
             9.584007, 10.51499, 11.39895, 11.68746, 11.63732, 10.08803]
        k = [2.392578, 2.447266, 2.412109, 2.591797, 2.755859, 2.595703,
             2.583984, 2.548828, 2.470703, 2.607422, 2.626953, 2.326172]
        ti = .1
        h_ref = 100
        alpha = .1
        site = UniformWeibullSite(f, A, k, ti, shear=PowerShear(h_ref=h_ref, alpha=alpha))

        x_i = y_i = np.arange(5)
        wdir_lst = np.arange(0, 360, 90)
        wsp_lst = np.arange(1, 20)
        local_wind = site.local_wind(x_i=x_i, y_i=y_i, h_i=h_ref, wd=wdir_lst, ws=wsp_lst)

        site.plot_ws_distribution(0, 0, wdir_lst)

        plt.figure()
        z = np.arange(1, 100)
        u = [site.local_wind(x_i=[0], y_i=[0], h_i=[z_], wd=0, ws=10).WS_ilk[0][0] for z_ in z]
        plt.plot(u, z)
        plt.xlabel('Wind speed [m/s]')
        plt.ylabel('Height [m]')
        plt.show()


main()