Newer
Older
from datetime import datetime
import functools
import os
import time
import matplotlib.pyplot as plt
import numpy as np
from py_wake import NOJ
from py_wake.deficit_models import fuga
from py_wake.deficit_models.gaussian import IEA37SimpleBastankhahGaussian
from py_wake.examples.data.hornsrev1 import wt_x, wt_y, HornsrevV80, Hornsrev1Site
from py_wake.tests import npt
from py_wake.tests.test_files import tfp
import sys
path = tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+00/'
def Fuga(site, wt):
return fuga.Fuga(path, site, wt)
test_lst = [(NOJ, 1.2), (IEA37SimpleBastankhahGaussian, 1.5), (Fuga, 1)]
def timeit(func, min_time=0, min_runs=1, verbose=False, line_profile=False, profile_funcs=[]):
if line_profile and getattr(sys, 'gettrace')() is None:
from line_profiler import LineProfiler
lp = LineProfiler()
lp.timer_unit = 1e-6
for f in profile_funcs:
lp.add_function(f)
lp_wrapper = lp(func)
t = time.time()
t = time.time() - t
if verbose:
lp.print_stats()
return res, [t]
else:
t_lst = []
for i in range(100000):
startTime = time.time()
res = func(*args, **kwargs)
t_lst.append(time.time() - startTime)
if sum(t_lst) > min_time and len(t_lst) >= min_runs:
if hasattr(func, '__name__'):
fn = func.__name__
else:
fn = "Function"
if verbose:
print('%s: %f +/-%f (%d runs)' % (fn, np.mean(t_lst), np.std(t_lst), i + 1))
return res, t_lst
assert getattr(sys, 'gettrace')() is None, "Skipping speed check, In debug mode!!!"
wt = HornsrevV80()
site = Hornsrev1Site()
wf_model = WFModel(site, wt)
aep, t_lst = timeit(lambda x, y: wf_model(x, y).aep().sum(), min_runs=3)(wt_x, wt_y)
assert min(t_lst) < max_min, f'{WFModel},{t_lst}'
fn = tfp + "speed_check/%s.txt" % WFModel.__name__
if os.path.isfile(fn):
with open(fn) as fid:
lines = fid.readlines()
# check aep
npt.assert_almost_equal(float(lines[-1].split(";")[1]), aep)
timings = np.array([(np.mean(eval(l.split(";")[2])), np.std(eval(l.split(";")[2]))) for l in lines])
dates = [np.datetime64(l.split(";")[0]) for l in lines]
dates = np.r_[dates, datetime.now()]
y = np.r_[timings[:, 0], np.mean(t_lst)]
error = np.r_[timings[:, 1], np.std(t_lst)]
fig, axes = plt.subplots(2, 1)
fig.suptitle(WFModel.__name__)
for x, ax in zip([dates, np.arange(len(dates))], axes):
ax.fill_between(x, y - 2 * error, y + 2 * error)
ax.plot(x, y, '.-k')
ax.axhline(y[:-1].mean() + 2 * error[:-1].mean(), ls='--', color='gray')
if y[-1] > (y[:-1].mean() + 2 * error[:-1].mean()):
raise Exception("Simulation time too slow, %f > %f" % (y[-1], (y[:-1].mean() + 2 * error[:-1].mean())))
if getattr(sys, 'gettrace')() is None:
with open(fn, 'a') as fid:
fid.write("%s;%.10f;%s\n" % (datetime.now(), aep, t_lst))