Newer
Older

Mads M. Pedersen
committed
from py_wake import np
from py_wake.deficit_models.deficit_model import WakeDeficitModel, BlockageDeficitModel, DeficitModel
from py_wake.deficit_models.gaussian import BastankhahGaussianDeficit, IEA37SimpleBastankhahGaussianDeficit,\
ZongGaussianDeficit, NiayifarGaussianDeficit, BastankhahGaussian, IEA37SimpleBastankhahGaussian, ZongGaussian,\
NiayifarGaussian, CarbajofuertesGaussianDeficit, TurboGaussianDeficit
from py_wake.deficit_models.gcl import GCLDeficit, GCL, GCLLocal
from py_wake.deficit_models.noj import NOJDeficit, NOJ, NOJLocalDeficit, NOJLocal, TurboNOJDeficit
from py_wake.examples.data.hornsrev1 import Hornsrev1Site
from py_wake.examples.data.iea37 import iea37_path
from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines, IEA37Site
from py_wake.examples.data.iea37.iea37_reader import read_iea37_windfarm
from py_wake.flow_map import HorizontalGrid, XYGrid
from py_wake.superposition_models import SquaredSum, WeightedSum
from py_wake.tests import npt
from py_wake.tests.test_files import tfp
from py_wake.turbulence_models.gcl_turb import GCLTurbulence
from py_wake.turbulence_models.stf import STF2017TurbulenceModel
from py_wake.wind_farm_models.engineering_models import PropagateDownwind, All2AllIterative
from numpy import newaxis as na
from py_wake.deficit_models.no_wake import NoWakeDeficit
from py_wake.rotor_avg_models.rotor_avg_model import CGIRotorAvg

Mads M. Pedersen
committed
class GCLLocalDeficit(GCLDeficit):
def __init__(self):
GCLDeficit.__init__(self, use_effective_ws=True, use_effective_ti=True)
@pytest.mark.parametrize(
'deficitModel,aep_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJDeficit(), (367205.0846866496, [9833.86287, 8416.99088, 10820.37673, 13976.26422, 22169.66036,
25234.9215, 37311.64388, 42786.37028, 24781.33444, 13539.82115,
14285.22744, 31751.29488, 75140.15677, 17597.10319, 11721.21226,
7838.84383])),
(NOJLocalDeficit(), (335151.6404628441, [8355.71335, 7605.92379, 10654.172, 13047.6971, 19181.46408,
23558.34198, 36738.52415, 38663.44595, 21056.39764, 12042.79324,
13813.46269, 30999.42279, 63947.61202, 17180.40299, 11334.12323,
6972.14345])),
(TurboNOJDeficit(), (354154.2962989713, [9320.85263, 8138.29496, 10753.75662, 13398.00865, 21189.29438,
24190.84895, 37081.91938, 41369.66605, 23488.54863, 12938.48451,
14065.00719, 30469.75602, 71831.78532, 16886.85274, 11540.51872,
7490.70156])),
(BastankhahGaussianDeficit(), (355971.9717035484,
[9143.74048, 8156.71681, 11311.92915, 13955.06316, 19807.65346,
25196.64182, 39006.65223, 41463.31044, 23042.22602, 12978.30551,
14899.26913, 32320.21637, 67039.04091, 17912.40907, 12225.04134,
7513.75582])),
(IEA37SimpleBastankhahGaussianDeficit(), read_iea37_windfarm(iea37_path + 'iea37-ex16.yaml')[2]),
(FugaDeficit(LUT_path=tfp + 'fuga/2MW/Z0=0.00408599Zi=00400Zeta0=0.00E+00/'),
(404441.6306021485, [9912.33731, 9762.05717, 12510.14066, 15396.76584, 23017.66483,
27799.7161, 43138.41606, 49623.79059, 24979.09001, 15460.45923,
16723.02619, 35694.35526, 77969.14805, 19782.41376, 13721.45739,
8950.79218])),
(GCLDeficit(), (370863.6246093183,
[9385.75387, 8768.52105, 11450.13309, 14262.42186, 21178.74926,
25751.59502, 39483.21753, 44573.31533, 23652.09976, 13924.58752,
15106.11692, 32840.02909, 71830.22035, 18200.49805, 12394.7626,
(GCLLocalDeficit(), (381187.36105425097,
[9678.85358, 9003.65526, 11775.06899, 14632.42259, 21915.85495,
26419.65189, 40603.68618, 45768.58091, 24390.71103, 14567.43106,
15197.82861, 32985.67922, 75062.92788, 18281.21981, 12470.01322,
8433.77587])),
(354263.1062694012, [8960.58672, 8095.48341, 11328.51572, 13924.50408, 19938.78428,
25141.4657, 39063.84731, 41152.04065, 22580.67854, 12944.55424,
14778.95385, 32294.41749, 66540.62665, 17898.1109, 12126.32111,
7494.21561])),
(NiayifarGaussianDeficit(),
(362228.4003016239, [9210.01349, 8330.06642, 11392.04851, 14082.13366, 20643.45247,
25426.07466, 39282.9259, 42344.50431, 23209.23399, 13390.08421,
14807.66824, 32535.89096, 69640.3283, 18031.93957, 12149.88163,
7752.15401])),
(CarbajofuertesGaussianDeficit(),
(362232.9643785641, [9140.59, 8399.80837, 11382.50882, 14053.32754, 20625.5118,
25374.06361, 39250.03042, 42699.02591, 23034.28679, 13479.45387,
14791.05027, 32446.01148, 69635.02796, 17982.12684, 12136.24637,
7803.89434])),
(TurboGaussianDeficit(),
(333562.491085791, [7693.8741, 7912.66663, 11101.33526, 13501.81915, 17181.16364,
24378.28457, 38280.46642, 40222.72204, 19388.56273, 12534.6865,
14611.83388, 31677.60005, 58275.09505, 17556.26027, 11989.19703,
7256.92376])),
def test_IEA37_ex16(deficitModel, aep_ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()

Mads M. Pedersen
committed
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel,
superpositionModel=SquaredSum(), turbulenceModel=GCLTurbulence())
aep_ilk = wf_model(x, y, wd=np.arange(0, 360, 22.5), ws=[9.8]).aep_ilk(normalize_probabilities=True)
aep_MW_l = aep_ilk.sum((0, 2)) * 1000

Mads M. Pedersen
committed
# check if ref is reasonable
aep_est = 16 * 3.35 * 24 * 365 * .8 # n_wt * P_rated * hours_pr_year - 20% wake loss = 375628.8
npt.assert_allclose(aep_ref[0], aep_est, rtol=.12)

Mads M. Pedersen
committed
npt.assert_allclose(aep_ref[1], [9500, 8700, 11500, 14300, 21300, 25900, 39600, 44300, 23900,
13900, 15200, 33000, 72100, 18300, 12500, 8000], rtol=.2)

Mads M. Pedersen
committed
npt.assert_almost_equal(aep_MW_l.sum(), aep_ref[0], 5)
npt.assert_array_almost_equal(aep_MW_l, aep_ref[1], 5)

Mads M. Pedersen
committed
@pytest.mark.parametrize('deficitModel', get_models(WakeDeficitModel))
def test_huge_distance(deficitModel):
ref = {"NOJDeficit": 9.799728,
"FugaDeficit": 9.8,
"FugaYawDeficit": 9.8,
"BastankhahGaussianDeficit": 9.799146,
"CarbajofuertesGaussianDeficit": 9.798708,
"IEA37SimpleBastankhahGaussianDeficit": 9.799151,
"NiayifarGaussianDeficit": 9.799148,
"TurboGaussianDeficit": 9.668338,

Mads M. Pedersen
committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"ZongGaussianDeficit": 9.799146,
"GCLDeficit": 9.728704,
"NoWakeDeficit": 9.8,
"NOJLocalDeficit": 9.797488,
"TurboNOJDeficit": 9.795231, }
site = IEA37Site(16)
windTurbines = IEA37_WindTurbines()
wfm = All2AllIterative(site, windTurbines, wake_deficitModel=deficitModel(), turbulenceModel=GCLTurbulence())
sim_res = wfm([0, 100000], [0, 0], wd=[0, 90, 180, 270])
# print(f'"{deficitModel.__name__}": {np.round(sim_res.WS_eff.sel(wt=1, ws=9.8, wd=270).item(),6)},')
npt.assert_array_almost_equal([9.8, 9.8, 9.8, ref[deficitModel.__name__]], sim_res.WS_eff.sel(wt=1).squeeze())
@pytest.mark.parametrize('deficitModel', get_models(BlockageDeficitModel))
def test_huge_distance_blockage(deficitModel):
if deficitModel is None:
return
ref = {"FugaDeficit": 9.8,
"FugaYawDeficit": 9.8,
"HybridInduction": 9.799999,
"SelfSimilarityDeficit2020": 9.799999,
"VortexDipole": 9.799999,
"RankineHalfBody": 9.799999,
"Rathmann": 9.799999,
"RathmannScaled": 9.799999,
"SelfSimilarityDeficit": 9.799999,
"VortexCylinder": 9.799999, }
site = IEA37Site(16)
windTurbines = IEA37_WindTurbines()
wfm = All2AllIterative(site, windTurbines, wake_deficitModel=NoWakeDeficit(),
blockage_deficitModel=deficitModel(),
turbulenceModel=GCLTurbulence())
sim_res = wfm([0, 100000], [0, 0], wd=[0, 90, 180, 270])
# print(f'"{deficitModel.__name__}": {np.round(sim_res.WS_eff.sel(wt=0, ws=9.8, wd=270).item(),6)},')
npt.assert_array_almost_equal([9.8, 9.8, 9.8, ref[deficitModel.__name__]], sim_res.WS_eff.sel(wt=1).squeeze())
@pytest.mark.parametrize(
'deficitModel,ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJDeficit(),
[3.27, 3.27, 9.0, 7.46, 7.46, 7.46, 7.46, 7.31, 7.31, 7.31, 7.31, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3]),
(NOJLocalDeficit(),
[3.09, 3.09, 9., 9., 5.54, 5.54, 5.54, 5.54, 5.54, 5.54, 6.73, 6.73, 6.73, 6.73, 6.73, 6.73, 6.73]),
(TurboNOJDeficit(),
[3.09, 3.09, 9., 9., 5.54, 5.54, 5.54, 5.54, 5.54, 5.54, 6.73, 6.73, 6.73, 6.73, 6.73, 6.73, 6.73]),
(BastankhahGaussianDeficit(),
[0.18, 3.6, 7.27, 8.32, 7.61, 6.64, 5.96, 6.04, 6.8, 7.69, 8.08, 7.87, 7.59, 7.46, 7.55, 7.84, 8.19]),
(IEA37SimpleBastankhahGaussianDeficit(),
[3.32, 4.86, 7.0, 8.1, 7.8, 7.23, 6.86, 6.9, 7.3, 7.82, 8.11, 8.04, 7.87, 7.79, 7.85, 8.04, 8.28]),
(FugaDeficit(LUT_path=tfp + 'fuga/2MW/Z0=0.00408599Zi=00400Zeta0=0.00E+00/'),
[6.91, 7.87, 8.77, 8.88, 8.55, 7.88, 7.24, 7.32, 8.01, 8.62, 8.72, 8.42, 8.05, 7.85, 8., 8.37, 8.69]),
[2.39, 5.01, 7.74, 8.34, 7.95, 7.58, 7.29, 7.32, 7.61, 7.92, 8.11, 8.09, 7.95, 7.83, 7.92, 8.1, 8.3]),
(GCLLocalDeficit(),
[3.05, 5.24, 7.61, 8.36, 8.08, 7.81, 7.61, 7.63, 7.82, 8.01, 8.11, 8.07, 7.94, 7.83, 7.92, 8.1, 8.3]),
(ZongGaussianDeficit(eps_coeff=0.35),
[6.34, 7.08, 8.09, 8.36, 7.5, 6.2, 5.23, 5.34, 6.43, 7.64, 8.08, 7.75, 7.36, 7.19, 7.32, 7.69, 8.14]),
(NiayifarGaussianDeficit(),
[0.18, 3.6, 7.27, 8.32, 7.61, 6.64, 5.97, 6.04, 6.8, 7.69, 8.08, 7.87, 7.59, 7.46, 7.56, 7.84, 8.19]),
(CarbajofuertesGaussianDeficit(),
[0.18, 3.6, 7.27, 8.32, 7.61, 6.64, 5.97, 6.04, 6.8, 7.69, 8.08, 7.87, 7.59, 7.46, 7.56, 7.84, 8.19]),
(TurboGaussianDeficit(),
[0.18, 3.6, 7.27, 8.32, 7.61, 6.64, 5.97, 6.04, 6.8, 7.69, 8.08, 7.87, 7.59, 7.46, 7.56, 7.84, 8.19]),
def test_deficitModel_wake_map(deficitModel, ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()

Mads M. Pedersen
committed
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel, superpositionModel=SquaredSum(),
x_j = np.linspace(-1500, 1500, 200)
y_j = np.linspace(-1500, 1500, 100)
flow_map = wf_model(x, y, wd=0, ws=9).flow_map(HorizontalGrid(x_j, y_j))
X, Y = flow_map.X, flow_map.Y
Z = flow_map.WS_eff_xylk[:, :, 0, 0]

Mads M. Pedersen
committed
mean_ref = [3.2, 4.9, 8., 8.2, 7.9, 7.4, 7., 7., 7.4, 7.9, 8.1, 8.1, 8., 7.8, 7.9, 8.1, 8.4]
if 0:
flow_map.plot_wake_map()
plt.plot(X[49, 100:133:2], Y[49, 100:133:2], '.-')
windTurbines.plot(x, y)

Mads M. Pedersen
committed
plt.figure()
plt.plot(Z[49, 100:133:2])
plt.plot(ref, label='ref')
plt.plot(mean_ref, label='Mean ref')
plt.legend()

Mads M. Pedersen
committed
npt.assert_array_almost_equal(ref, Z[49, 100:133:2], 2)

Mads M. Pedersen
committed
# check that ref is reasonable
npt.assert_allclose(ref[2:], mean_ref[2:], atol=2.6)
@pytest.mark.parametrize(

Mads M. Pedersen
committed
'deficitModel,wake_radius_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJDeficit(), [100., 75., 150., 100., 100.]),
(NOJLocalDeficit(), [71., 46., 92., 71., 61.5]),
(TurboNOJDeficit(), [99.024477, 61.553917, 123.107833, 92.439673, 97.034049]),
(BastankhahGaussianDeficit(), [83.336286, 57.895893, 115.791786, 75.266662, 83.336286]),
(IEA37SimpleBastankhahGaussianDeficit(), [83.336286, 57.895893, 115.791786, 75.266662, 83.336286]),
(FugaDeficit(LUT_path=tfp + 'fuga/2MW/Z0=0.00408599Zi=00400Zeta0=0.00E+00/'), [100, 50, 100, 100, 100]),
(GCLDeficit(), [156.949964, 97.763333, 195.526667, 113.225695, 111.340236]),
(GCLLocalDeficit(), [156.949964, 97.763333, 195.526667, 113.225695, 111.340236]),
(ZongGaussianDeficit(eps_coeff=0.35), [91.15734, 66.228381, 132.456762, 94.90156, 79.198215]),
(NiayifarGaussianDeficit(), [92.880786, 67.440393, 134.880786, 84.811162, 73.880786]),
(CarbajofuertesGaussianDeficit(), [102.914211, 68.866465, 137.866624, 102.914211, 85.457105]),
(TurboGaussianDeficit(), [76.674176, 41.548202, 83.096405, 64.831198, 76.143396]),

Mads M. Pedersen
committed
def test_wake_radius(deficitModel, wake_radius_ref):
mean_ref = [105, 68, 135, 93, 123]
# check that ref is reasonable
npt.assert_allclose(wake_radius_ref, mean_ref, rtol=.5)
npt.assert_array_almost_equal(deficitModel.wake_radius(
D_src_il=np.reshape([100, 50, 100, 100, 100], (5, 1)),
dw_ijlk=np.reshape([500, 500, 1000, 500, 500], (5, 1, 1, 1)),
WS_ilk=np.reshape([10, 10, 10, 10, 10], (5, 1, 1)),
ct_ilk=np.reshape([.8, .8, .8, .4, .8], (5, 1, 1)),

Mads M. Pedersen
committed
TI_ilk=np.reshape([.1, .1, .1, .1, .05], (5, 1, 1)),
TI_eff_ilk=np.reshape([.1, .1, .1, .1, .05], (5, 1, 1)))[:, 0, 0, 0],
wake_radius_ref)
# Check that it works when called from WindFarmModel
site = IEA37Site(16)
windTurbines = IEA37_WindTurbines()
wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel, turbulenceModel=GCLTurbulence())
wfm(x=[0, 500], y=[0, 0], wd=[30], ws=[10])
if 0:
sim_res = wfm([0], [0], wd=[270], ws=10)
sim_res.flow_map(HorizontalGrid(x=np.arange(-100, 1500, 10))).WS_eff.plot()
x = np.arange(0, 1500, 10)
wr = deficitModel.wake_radius(
D_src_il=np.reshape([130], (1, 1)),
dw_ijlk=np.reshape(x, (1, len(x), 1, 1)),
ct_ilk=sim_res.CT.values,
TI_ilk=np.reshape(sim_res.TI.values, (1, 1, 1)),
TI_eff_ilk=sim_res.TI_eff.values)[0, :, 0, 0]
plt.title(deficitModel.__class__.__name__)
plt.plot(x, wr)
plt.plot(x, -wr)
plt.axis('equal')
plt.show()
def test_wake_radius_not_implemented():
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
class MyDeficitModel(WakeDeficitModel):
args4deficit = ['WS_ilk', 'dw_ijlk', 'cw_ijlk']
def calc_deficit(self, WS_ilk, dw_ijlk, cw_ijlk, **_):
# 10% deficit in downstream triangle
ws_10pct_ijlk = 0.1 * WS_ilk[:, na]
triangle_ijlk = ((.2 * dw_ijlk) > cw_ijlk)
return ws_10pct_ijlk * triangle_ijlk
wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=MyDeficitModel(),
with pytest.raises(NotImplementedError, match="wake_radius not implemented for MyDeficitModel"):
@pytest.mark.parametrize(
'deficitModel,aep_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(BastankhahGaussianDeficit(), (345846.3355259293,
[8835.30563, 7877.90062, 11079.66832, 13565.65235, 18902.99769,
24493.53897, 38205.75284, 40045.9948, 22264.97018, 12662.90784,
14650.96535, 31289.90349, 65276.92307, 17341.39229, 12021.3049,
7331.15717])),
(ZongGaussianDeficit(eps_coeff=0.35),
(342944.4057168523, [8674.44232, 7806.22033, 11114.78804, 13549.48197, 18895.50866,
24464.34244, 38326.85532, 39681.61999, 21859.59465, 12590.25899,
14530.24656, 31158.81189, 63812.14454, 17268.73912, 11922.25359,
7289.09731])),
(349044.6891842835, [8888.36909, 8025.38191, 11134.3202, 13643.08009, 19503.25093,
24633.33906, 38394.20758, 40795.69138, 22398.69011, 12972.04355,
14504.45911, 31328.69308, 66049.04782, 17362.89014, 11901.09465,
7510.13048])),
])
def test_IEA37_ex16_convection(deficitModel, aep_ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel,
superpositionModel=WeightedSum(), turbulenceModel=GCLTurbulence())
aep_ilk = wf_model(x, y, wd=np.arange(0, 360, 22.5), ws=[9.8]).aep_ilk(normalize_probabilities=True)
aep_MW_l = aep_ilk.sum((0, 2)) * 1000
# check if ref is reasonable
aep_est = 16 * 3.35 * 24 * 365 * .8 # n_wt * P_rated * hours_pr_year - 20% wake loss = 375628.8
npt.assert_allclose(aep_ref[0], aep_est, rtol=.11)
npt.assert_allclose(aep_ref[1], [9500, 8700, 11500, 14300, 21300, 25900, 39600, 44300, 23900,
13900, 15200, 33000, 72100, 18300, 12500, 8000], rtol=.15)
npt.assert_almost_equal(aep_MW_l.sum(), aep_ref[0], 5)
npt.assert_array_almost_equal(aep_MW_l, aep_ref[1], 5)
@pytest.mark.parametrize(
'deficitModel,ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(BastankhahGaussianDeficit(),
[0.17, 3.55, 7.61, 8.12, 7.58, 6.63, 5.93, 6.04, 6.65, 7.35, 7.69, 7.65, 7.54, 7.45, 7.55, 7.84, 8.19]),
(ZongGaussianDeficit(eps_coeff=0.35),
[6.34, 7.05, 7.9, 8.15, 7.45, 6.19, 5.21, 5.26, 6.38, 7.32, 7.7, 7.54, 7.34, 7.18, 7.32, 7.69, 8.14]),
[0.17, 3.55, 7.61, 8.12, 7.58, 6.63, 5.93, 6.04, 6.65, 7.35, 7.69, 7.65, 7.55, 7.45, 7.56, 7.84, 8.19]),
])
def test_deficitModel_wake_map_convection(deficitModel, ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = PropagateDownwind(site, windTurbines, wake_deficitModel=deficitModel, superpositionModel=WeightedSum(),
turbulenceModel=GCLTurbulence())
x_j = np.linspace(-1500, 1500, 200)
y_j = np.linspace(-1500, 1500, 100)
flow_map = wf_model(x, y, wd=0, ws=9).flow_map(HorizontalGrid(x_j, y_j))
X, Y = flow_map.X, flow_map.Y
Z = flow_map.WS_eff_xylk[:, :, 0, 0]
mean_ref = [3.2, 4.9, 8., 8.2, 7.9, 7.4, 7., 7., 7.4, 7.9, 8.1, 8.1, 8., 7.8, 7.9, 8.1, 8.4]
if 0:
flow_map.plot_wake_map()
plt.plot(X[49, 100:133:2], Y[49, 100:133:2], '.-')
windTurbines.plot(x, y)
plt.figure()
plt.plot(Z[49, 100:133:2], label='Actual')
plt.plot(ref, label='Reference')
plt.plot(mean_ref, label='Mean ref')
plt.legend()
plt.show()
# check that ref is reasonable
npt.assert_allclose(ref[2:], mean_ref[2:], atol=2.6)
npt.assert_array_almost_equal(Z[49, 100:133:2], ref, 2)
@pytest.mark.parametrize(
'deficitModel,ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(ZongGaussianDeficit(eps_coeff=0.35),

Mads M. Pedersen
committed
[6.34, 7.05, 8.18, 8.25, 7.49, 6.2, 5.2, 5.26, 6.37, 7.33, 7.7, 7.54, 7.34, 7.18, 7.32, 7.7, 8.16])
])
def test_deficitModel_wake_map_convection_all2all(deficitModel, ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = All2AllIterative(site, windTurbines, wake_deficitModel=deficitModel, superpositionModel=WeightedSum(),
blockage_deficitModel=VortexDipole(), turbulenceModel=STF2017TurbulenceModel())
x_j = np.linspace(-1500, 1500, 200)
y_j = np.linspace(-1500, 1500, 100)
flow_map = wf_model(x, y, wd=0, ws=9).flow_map(HorizontalGrid(x_j, y_j))
X, Y = flow_map.X, flow_map.Y
Z = flow_map.WS_eff_xylk[:, :, 0, 0]
mean_ref = [3.2, 4.9, 8., 8.2, 7.9, 7.4, 7., 7., 7.4, 7.9, 8.1, 8.1, 8., 7.8, 7.9, 8.1, 8.4]
if 0:
flow_map.plot_wake_map()
plt.plot(X[49, 100:133:2], Y[49, 100:133:2], '.-')
windTurbines.plot(x, y)
plt.figure()
plt.plot(Z[49, 100:133:2], label='Actual')

Mads M. Pedersen
committed
print(np.round(Z[49, 100:133:2], 2).values.tolist())
plt.plot(ref, label='Reference')
plt.plot(mean_ref, label='Mean ref')
plt.legend()
plt.show()
# check that ref is reasonable
npt.assert_allclose(ref[2:], mean_ref[2:], atol=2.6)
npt.assert_array_almost_equal(Z[49, 100:133:2], ref, 2)
@pytest.mark.parametrize(
'windFarmModel,aep_ref',
# test that the result is equal to last run (no evidens that these number are correct)
[(NOJ,
(367205.0846866496, [9833.86287, 8416.99088, 10820.37673, 13976.26422, 22169.66036,
25234.9215, 37311.64388, 42786.37028, 24781.33444, 13539.82115,
14285.22744, 31751.29488, 75140.15677, 17597.10319, 11721.21226,
7838.84383])),
(NOJLocal,
(335151.6404628441, [8355.71335, 7605.92379, 10654.172, 13047.6971, 19181.46408,
23558.34198, 36738.52415, 38663.44595, 21056.39764, 12042.79324,
13813.46269, 30999.42279, 63947.61202, 17180.40299, 11334.12323,
6972.14345])),
(BastankhahGaussian, (355971.9717035484,
[9143.74048, 8156.71681, 11311.92915, 13955.06316, 19807.65346,
25196.64182, 39006.65223, 41463.31044, 23042.22602, 12978.30551,
14899.26913, 32320.21637, 67039.04091, 17912.40907, 12225.04134,
7513.75582])),
(IEA37SimpleBastankhahGaussian, read_iea37_windfarm(iea37_path + 'iea37-ex16.yaml')[2]),
(lambda *args, **kwargs: Fuga(tfp + 'fuga/2MW/Z0=0.00408599Zi=00400Zeta0=0.00E+00/', *args, **kwargs),
(404441.6306021485, [9912.33731, 9762.05717, 12510.14066, 15396.76584, 23017.66483,
27799.7161, 43138.41606, 49623.79059, 24979.09001, 15460.45923,
16723.02619, 35694.35526, 77969.14805, 19782.41376, 13721.45739,
8950.79218])),
(GCL, (370863.6246093183,
[9385.75387, 8768.52105, 11450.13309, 14262.42186, 21178.74926,
25751.59502, 39483.21753, 44573.31533, 23652.09976, 13924.58752,
15106.11692, 32840.02909, 71830.22035, 18200.49805, 12394.7626,
8061.6033])),
(GCLLocal, (381187.36105425097,
[9678.85358, 9003.65526, 11775.06899, 14632.42259, 21915.85495,
26419.65189, 40603.68618, 45768.58091, 24390.71103, 14567.43106,
15197.82861, 32985.67922, 75062.92788, 18281.21981, 12470.01322,
8433.77587])),
(354835.94834511646, [8980.11244, 8114.89785, 11330.44682, 13937.09531, 19989.40257,
25164.19987, 39070.50626, 41250.73072, 22629.88335, 12975.84852,
14779.98654, 32311.99639, 66753.4865, 17907.85342, 12127.16844,
7512.33335])),
(NiayifarGaussian,
(362228.4003016239, [9210.01349, 8330.06642, 11392.04851, 14082.13366, 20643.45247,
25426.07466, 39282.9259, 42344.50431, 23209.23399, 13390.08421,
14807.66824, 32535.89096, 69640.3283, 18031.93957, 12149.88163,
7752.15401])),
])
def test_IEA37_ex16_windFarmModel(windFarmModel, aep_ref):
site = IEA37Site(16)
x, y = site.initial_position.T
windTurbines = IEA37_WindTurbines()
wf_model = windFarmModel(site, windTurbines, turbulenceModel=GCLTurbulence())
wf_model.superpositionModel = SquaredSum()
aep_ilk = wf_model(x, y, wd=np.arange(0, 360, 22.5), ws=[9.8]).aep_ilk(normalize_probabilities=True)
aep_MW_l = aep_ilk.sum((0, 2)) * 1000
# check if ref is reasonable
aep_est = 16 * 3.35 * 24 * 365 * .8 # n_wt * P_rated * hours_pr_year - 20% wake loss = 375628.8
npt.assert_allclose(aep_ref[0], aep_est, rtol=.11)
npt.assert_allclose(aep_ref[1], [9500, 8700, 11500, 14300, 21300, 25900, 39600, 44300, 23900,
13900, 15200, 33000, 72100, 18300, 12500, 8000], rtol=.15)
npt.assert_almost_equal(aep_MW_l.sum(), aep_ref[0], 5)
npt.assert_array_almost_equal(aep_MW_l, aep_ref[1], 5)

Mads M. Pedersen
committed
site = Hornsrev1Site()
windTurbines = IEA37_WindTurbines()
for deficitModel in get_models(WakeDeficitModel):
wf_model = All2AllIterative(site, windTurbines, wake_deficitModel=deficitModel(),
turbulenceModel=STF2017TurbulenceModel())
sim_res = wf_model([0], [0])
npt.assert_array_equal(sim_res.WS_eff, sim_res.WS.broadcast_like(sim_res.WS_eff))
@pytest.mark.parametrize('upstream_only,ref', [(False, [[9, 9, 9], # -1 upstream
[7, 7, 7]]), # - (1+2) downstream
(True, [[9, 9, 9], # -1 upstream
[8, 8, 8]])]) # -2 downstream
def test_wake_blockage_split(upstream_only, ref):
class MyWakeModel(WakeDeficitModel):
args4deficit = []
def calc_deficit(self, dw_ijlk, **kwargs):
return np.ones_like(dw_ijlk) * 2
class MyBlockageModel(BlockageDeficitModel):
args4deficit = []
BlockageDeficitModel.__init__(self, upstream_only=upstream_only)
def calc_deficit(self, dw_ijlk, **kwargs):
return np.ones_like(dw_ijlk)
site = Hornsrev1Site()
windTurbines = IEA37_WindTurbines()
wf_model = All2AllIterative(site, windTurbines, wake_deficitModel=MyWakeModel(),
blockage_deficitModel=MyBlockageModel(upstream_only=upstream_only))
sim_res = wf_model([0], [0], ws=10, wd=270)
fm = sim_res.flow_map(XYGrid(x=[-100, 100], y=[-100, 0, 100]))
if 0:
sim_res.flow_map().plot_wake_map()
print(fm.WS_eff.values.squeeze().T)
plt.show()
npt.assert_array_equal(fm.WS_eff.values.squeeze().T, ref)
@pytest.mark.parametrize('deficitModel', get_models(WakeDeficitModel))
def test_All2AllIterative_WakeDeficit_RotorAvg(deficitModel):
site = IEA37Site(16)
windTurbines = IEA37_WindTurbines()
wf_model = All2AllIterative(site, windTurbines,
wake_deficitModel=deficitModel(),
turbulenceModel=STF2017TurbulenceModel(),
rotorAvgModel=CGIRotorAvg(4))
sim_res = wf_model([0, 500, 1000, 1500], [0, 0, 0, 0],
wd=270, ws=10)
if 0:
sim_res.flow_map(
XYGrid(x=np.linspace(-200, 2000, 100))).plot_wake_map()
plt.show()