Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
PyWake
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
TOPFARM
PyWake
Commits
3c4895f9
Commit
3c4895f9
authored
3 months ago
by
Ernestas Simutis
Committed by
Mads M. Pedersen
3 months ago
Browse files
Options
Downloads
Patches
Plain Diff
Fix parallel dAEP with timeseries site
parent
adc95c37
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!632
Fix parallel dAEP with timeseries site
Pipeline
#68711
failed
3 months ago
Stage: test
Stage: deploy
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
py_wake/tests/test_wind_farm_models/test_parallel_daep.py
+109
-0
109 additions, 0 deletions
py_wake/tests/test_wind_farm_models/test_parallel_daep.py
py_wake/wind_farm_models/wind_farm_model.py
+13
-8
13 additions, 8 deletions
py_wake/wind_farm_models/wind_farm_model.py
with
122 additions
and
8 deletions
py_wake/tests/test_wind_farm_models/test_parallel_daep.py
0 → 100644
+
109
−
0
View file @
3c4895f9
import
numpy.testing
as
npt
from
py_wake.utils.gradients
import
cs
from
py_wake.examples.data.hornsrev1
import
V80
from
py_wake.literature.turbopark
import
Nygaard_2022
from
py_wake.site.xrsite
import
XRSite
from
py_wake.utils.gradients
import
autograd
import
numpy
as
np
import
xarray
as
xr
import
numpy
as
np
# fmt: skip
np
.
random
.
seed
(
42
)
def
get_xrsite_ds
():
x_dim
,
y_dim
,
h_dim
,
time_dim
=
100
,
40
,
8
,
48
h
=
np
.
array
([
30.0
,
50.0
,
100.0
,
150.0
,
200.0
,
250.0
,
300.0
,
400.0
])
x
=
np
.
linspace
(
6.947e5
,
8.932e5
,
x_dim
)
y
=
np
.
linspace
(
8.449e5
,
9.225e5
,
y_dim
)
time
=
np
.
arange
(
48
)
WS
=
np
.
random
.
uniform
(
3.0
,
15.0
,
size
=
(
y_dim
,
x_dim
,
h_dim
,
time_dim
))
WD
=
np
.
random
.
uniform
(
250.0
,
300.0
,
size
=
(
y_dim
,
x_dim
,
h_dim
,
time_dim
))
P
=
1.0
TI
=
0.06
ds
=
xr
.
Dataset
(
{
"
WS
"
:
([
"
y
"
,
"
x
"
,
"
h
"
,
"
time
"
],
WS
),
"
WD
"
:
([
"
y
"
,
"
x
"
,
"
h
"
,
"
time
"
],
WD
),
"
P
"
:
([],
P
),
"
TI
"
:
([],
TI
),
},
coords
=
{
"
h
"
:
([
"
h
"
],
h
),
"
x
"
:
([
"
x
"
],
x
),
"
y
"
:
([
"
y
"
],
y
),
"
time
"
:
([
"
time
"
],
time
),
},
)
return
ds
def
test_parallel_daep_with_time_site
():
ds
=
get_xrsite_ds
()
ds
=
ds
.
transpose
(
"
x
"
,
"
y
"
,
"
h
"
,
"
time
"
)
T
=
np
.
arange
(
len
(
ds
.
time
))
site
=
XRSite
(
ds
)
wfm
=
Nygaard_2022
(
site
,
V80
())
test_x
,
test_y
=
[
ds
.
x
.
mean
().
item
(),
ds
.
x
.
mean
().
item
(),
ds
.
x
.
mean
().
item
(),
],
[
ds
.
y
.
mean
().
item
(),
ds
.
y
.
mean
().
item
()
+
250
,
ds
.
y
.
mean
().
item
()
+
500
,
]
def
aep_func
(
x
,
y
,
n_cpu
=
1
):
# full=False, **kwargs
_f
=
np
.
zeros_like
(
T
)
sim_res
=
wfm
(
x
,
y
,
time
=
T
,
ws
=
_f
,
wd
=
_f
,
n_cpu
=
n_cpu
)
return
sim_res
.
aep
().
sum
().
values
def
aep_jac
(
x
,
y
,
n_cpu
=
1
,
**
kwargs
):
_f
=
np
.
zeros_like
(
T
)
jx
,
jy
=
wfm
.
aep_gradients
(
gradient_method
=
autograd
,
wrt_arg
=
[
"
x
"
,
"
y
"
],
x
=
x
,
y
=
y
,
ws
=
_f
,
wd
=
_f
,
time
=
T
,
n_cpu
=
n_cpu
,
)
return
np
.
array
([
np
.
atleast_2d
(
jx
),
np
.
atleast_2d
(
jy
)])
aep1
=
aep_func
(
test_x
,
test_y
,
n_cpu
=
1
)
aep2
=
aep_func
(
test_x
,
test_y
,
n_cpu
=
2
)
npt
.
assert_almost_equal
(
aep1
,
aep2
,
decimal
=
6
,
err_msg
=
"
AEP is not the same for n_cpu=1 and n_cpu=2
"
)
cs_grad1
=
cs
(
aep_func
,
True
,
argnum
=
[
0
,
1
])(
test_x
,
test_y
,
n_cpu
=
1
)
ad_grad1
=
aep_jac
(
test_x
,
test_y
,
n_cpu
=
1
)
npt
.
assert_almost_equal
(
np
.
stack
(
cs_grad1
,
axis
=
0
).
reshape
(
ad_grad1
.
shape
),
ad_grad1
,
decimal
=
6
,
err_msg
=
"
Gradient is not the same for n_cpu=1 compared to complex step
"
,
)
cs_grad2
=
cs
(
aep_func
,
True
,
argnum
=
[
0
,
1
])(
test_x
,
test_y
,
n_cpu
=
2
)
ad_grad2
=
aep_jac
(
test_x
,
test_y
,
n_cpu
=
2
)
npt
.
assert_almost_equal
(
cs_grad1
,
cs_grad2
,
decimal
=
6
,
)
npt
.
assert_almost_equal
(
ad_grad1
,
ad_grad2
,
decimal
=
6
,
err_msg
=
"
[AD] Gradient is not the same for n_cpu=1 and n_cpu=2
"
,
)
npt
.
assert_almost_equal
(
np
.
stack
(
cs_grad2
,
axis
=
0
).
reshape
(
ad_grad2
.
shape
),
ad_grad2
,
decimal
=
6
,
err_msg
=
"
[CS vs AD] Gradient is not the same for n_cpu=1 and n_cpu=2
"
,
)
This diff is collapsed.
Click to expand it.
py_wake/wind_farm_models/wind_farm_model.py
+
13
−
8
View file @
3c4895f9
...
...
@@ -322,7 +322,7 @@ class WindFarmModel(ABC):
else
:
# pragma: no cover
raise
ValueError
(
f
'
Shape,
{
s
}
, of argument
{
k
}
is invalid
'
)
arg_lst
=
[{
'
wd
'
:
wd
[
wd_slice
],
'
ws
'
:
ws
[
ws_slice
],
'
time
'
:
get_subtask_arg
(
'
time
'
,
time
,
wd_slice
,
ws_slice
),
arg_lst
=
[{
'
wd
'
:
wd
[
wd_slice
],
'
ws
'
:
ws
[
ws_slice
],
'
time
'
:
get_subtask_arg
(
'
time
'
,
time
,
wd_slice
,
ws_slice
),
**
{
k
:
get_subtask_arg
(
k
,
v
,
wd_slice
,
ws_slice
)
for
k
,
v
in
kwargs
.
items
()}}
for
wd_slice
,
ws_slice
in
slice_lst
]
return
map_func
,
arg_lst
,
wd_chunks
,
ws_chunks
...
...
@@ -330,16 +330,21 @@ class WindFarmModel(ABC):
def
_aep_chunk_wrapper
(
self
,
aep_function
,
x
,
y
,
h
=
None
,
type
=
0
,
wd
=
None
,
ws
=
None
,
# @ReservedAssignment
normalize_probabilities
=
False
,
with_wake_loss
=
True
,
n_cpu
=
1
,
wd_chunks
=
None
,
ws_chunks
=
None
,
**
kwargs
):
n_cpu
=
1
,
wd_chunks
=
None
,
ws_chunks
=
None
,
time
=
False
,
**
kwargs
):
wd
,
ws
=
self
.
site
.
get_defaults
(
wd
,
ws
)
wd_bin_size
=
self
.
site
.
wd_bin_size
(
wd
)
map_func
,
kwargs_lst
,
wd_chunks
,
ws_chunks
=
self
.
_multiprocessing_chunks
(
wd
=
wd
,
ws
=
ws
,
time
=
Fals
e
,
n_cpu
=
n_cpu
,
wd_chunks
=
wd_chunks
,
ws_chunks
=
ws_chunks
,
wd
=
wd
,
ws
=
ws
,
time
=
tim
e
,
n_cpu
=
n_cpu
,
wd_chunks
=
wd_chunks
,
ws_chunks
=
ws_chunks
,
x
=
x
,
y
=
y
,
h
=
h
,
type
=
type
,
**
kwargs
)
return
np
.
sum
([
np
.
array
(
aep
)
/
self
.
site
.
wd_bin_size
(
args
[
'
wd
'
])
*
wd_bin_size
for
args
,
aep
in
zip
(
kwargs_lst
,
map_func
(
aep_function
,
kwargs_lst
))],
0
)
if
time
is
False
:
return
np
.
sum
([
np
.
array
(
aep
)
/
self
.
site
.
wd_bin_size
(
args
[
'
wd
'
])
*
wd_bin_size
for
args
,
aep
in
zip
(
kwargs_lst
,
map_func
(
aep_function
,
kwargs_lst
))],
0
)
return
np
.
mean
(
[
np
.
array
(
aep
)
for
aep
in
map_func
(
aep_function
,
kwargs_lst
)],
axis
=
0
)
def
aep_gradients
(
self
,
gradient_method
=
autograd
,
wrt_arg
=
[
'
x
'
,
'
y
'
],
gradient_method_kwargs
=
{},
n_cpu
=
1
,
wd_chunks
=
None
,
ws_chunks
=
None
,
**
kwargs
):
...
...
@@ -506,13 +511,13 @@ class SimulationResult(xr.Dataset):
if
linear_power_segments
:
s
=
"
The linear_power_segments method
"
assert
all
([
n
in
self
for
n
in
[
'
Weibull_A
'
,
'
Weibull_k
'
,
'
Sector_frequency
'
]]),
\
assert
all
([
n
in
self
for
n
in
[
'
Weibull_A
'
,
'
Weibull_k
'
,
'
Sector_frequency
'
]]),
\
s
+
"
requires a site with weibull information
"
assert
normalize_probabilities
is
False
,
\
s
+
"
cannot be combined with normalize_probabilities
"
assert
np
.
all
(
self
.
Power
.
isel
(
ws
=
0
)
==
0
)
and
np
.
all
(
self
.
Power
.
isel
(
ws
=-
1
)
==
0
),
\
assert
np
.
all
(
self
.
Power
.
isel
(
ws
=
0
)
==
0
)
and
np
.
all
(
self
.
Power
.
isel
(
ws
=-
1
)
==
0
),
\
s
+
"
requires first wind speed to have no power (just below cut-in)
"
assert
np
.
all
(
self
.
Power
.
isel
(
ws
=-
1
)
==
0
),
\
assert
np
.
all
(
self
.
Power
.
isel
(
ws
=-
1
)
==
0
),
\
s
+
"
requires last wind speed to have no power (just above cut-out)
"
weighted_power
=
weibull
.
WeightedPower
(
self
.
ws
.
values
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment