Skip to content
Snippets Groups Projects
Commit 3c4895f9 authored by Ernestas Simutis's avatar Ernestas Simutis Committed by Mads M. Pedersen
Browse files

Fix parallel dAEP with timeseries site

parent adc95c37
No related branches found
No related tags found
1 merge request!632Fix parallel dAEP with timeseries site
Pipeline #68711 failed
import numpy.testing as npt
from py_wake.utils.gradients import cs
from py_wake.examples.data.hornsrev1 import V80
from py_wake.literature.turbopark import Nygaard_2022
from py_wake.site.xrsite import XRSite
from py_wake.utils.gradients import autograd
import numpy as np
import xarray as xr
import numpy as np # fmt: skip
np.random.seed(42)
def get_xrsite_ds():
x_dim, y_dim, h_dim, time_dim = 100, 40, 8, 48
h = np.array([30.0, 50.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0])
x = np.linspace(6.947e5, 8.932e5, x_dim)
y = np.linspace(8.449e5, 9.225e5, y_dim)
time = np.arange(48)
WS = np.random.uniform(3.0, 15.0, size=(y_dim, x_dim, h_dim, time_dim))
WD = np.random.uniform(250.0, 300.0, size=(y_dim, x_dim, h_dim, time_dim))
P = 1.0
TI = 0.06
ds = xr.Dataset(
{
"WS": (["y", "x", "h", "time"], WS),
"WD": (["y", "x", "h", "time"], WD),
"P": ([], P),
"TI": ([], TI),
},
coords={
"h": (["h"], h),
"x": (["x"], x),
"y": (["y"], y),
"time": (["time"], time),
},
)
return ds
def test_parallel_daep_with_time_site():
ds = get_xrsite_ds()
ds = ds.transpose("x", "y", "h", "time")
T = np.arange(len(ds.time))
site = XRSite(ds)
wfm = Nygaard_2022(site, V80())
test_x, test_y = [
ds.x.mean().item(),
ds.x.mean().item(),
ds.x.mean().item(),
], [
ds.y.mean().item(),
ds.y.mean().item() + 250,
ds.y.mean().item() + 500,
]
def aep_func(x, y, n_cpu=1): # full=False, **kwargs
_f = np.zeros_like(T)
sim_res = wfm(x, y, time=T, ws=_f, wd=_f, n_cpu=n_cpu)
return sim_res.aep().sum().values
def aep_jac(x, y, n_cpu=1, **kwargs):
_f = np.zeros_like(T)
jx, jy = wfm.aep_gradients(
gradient_method=autograd,
wrt_arg=["x", "y"],
x=x,
y=y,
ws=_f,
wd=_f,
time=T,
n_cpu=n_cpu,
)
return np.array([np.atleast_2d(jx), np.atleast_2d(jy)])
aep1 = aep_func(test_x, test_y, n_cpu=1)
aep2 = aep_func(test_x, test_y, n_cpu=2)
npt.assert_almost_equal(
aep1, aep2, decimal=6, err_msg="AEP is not the same for n_cpu=1 and n_cpu=2"
)
cs_grad1 = cs(aep_func, True, argnum=[0, 1])(test_x, test_y, n_cpu=1)
ad_grad1 = aep_jac(test_x, test_y, n_cpu=1)
npt.assert_almost_equal(
np.stack(cs_grad1, axis=0).reshape(ad_grad1.shape),
ad_grad1,
decimal=6,
err_msg="Gradient is not the same for n_cpu=1 compared to complex step",
)
cs_grad2 = cs(aep_func, True, argnum=[0, 1])(test_x, test_y, n_cpu=2)
ad_grad2 = aep_jac(test_x, test_y, n_cpu=2)
npt.assert_almost_equal(
cs_grad1,
cs_grad2,
decimal=6,
)
npt.assert_almost_equal(
ad_grad1,
ad_grad2,
decimal=6,
err_msg="[AD] Gradient is not the same for n_cpu=1 and n_cpu=2",
)
npt.assert_almost_equal(
np.stack(cs_grad2, axis=0).reshape(ad_grad2.shape),
ad_grad2,
decimal=6,
err_msg="[CS vs AD] Gradient is not the same for n_cpu=1 and n_cpu=2",
)
......@@ -322,7 +322,7 @@ class WindFarmModel(ABC):
else: # pragma: no cover
raise ValueError(f'Shape, {s}, of argument {k} is invalid')
arg_lst = [{'wd': wd[wd_slice], 'ws': ws[ws_slice], 'time':get_subtask_arg('time', time, wd_slice, ws_slice),
arg_lst = [{'wd': wd[wd_slice], 'ws': ws[ws_slice], 'time': get_subtask_arg('time', time, wd_slice, ws_slice),
** {k: get_subtask_arg(k, v, wd_slice, ws_slice) for k, v in kwargs.items()}} for wd_slice, ws_slice in slice_lst]
return map_func, arg_lst, wd_chunks, ws_chunks
......@@ -330,16 +330,21 @@ class WindFarmModel(ABC):
def _aep_chunk_wrapper(self, aep_function,
x, y, h=None, type=0, wd=None, ws=None, # @ReservedAssignment
normalize_probabilities=False, with_wake_loss=True,
n_cpu=1, wd_chunks=None, ws_chunks=None, **kwargs):
n_cpu=1, wd_chunks=None, ws_chunks=None, time=False, **kwargs):
wd, ws = self.site.get_defaults(wd, ws)
wd_bin_size = self.site.wd_bin_size(wd)
map_func, kwargs_lst, wd_chunks, ws_chunks = self._multiprocessing_chunks(
wd=wd, ws=ws, time=False, n_cpu=n_cpu, wd_chunks=wd_chunks, ws_chunks=ws_chunks,
wd=wd, ws=ws, time=time, n_cpu=n_cpu, wd_chunks=wd_chunks, ws_chunks=ws_chunks,
x=x, y=y, h=h, type=type, **kwargs)
return np.sum([np.array(aep) / self.site.wd_bin_size(args['wd']) * wd_bin_size
for args, aep in zip(kwargs_lst, map_func(aep_function, kwargs_lst))], 0)
if time is False:
return np.sum([np.array(aep) / self.site.wd_bin_size(args['wd']) * wd_bin_size
for args, aep in zip(kwargs_lst, map_func(aep_function, kwargs_lst))], 0)
return np.mean(
[np.array(aep) for aep in map_func(aep_function, kwargs_lst)], axis=0
)
def aep_gradients(self, gradient_method=autograd, wrt_arg=['x', 'y'], gradient_method_kwargs={},
n_cpu=1, wd_chunks=None, ws_chunks=None, **kwargs):
......@@ -506,13 +511,13 @@ class SimulationResult(xr.Dataset):
if linear_power_segments:
s = "The linear_power_segments method "
assert all([n in self for n in ['Weibull_A', 'Weibull_k', 'Sector_frequency']]),\
assert all([n in self for n in ['Weibull_A', 'Weibull_k', 'Sector_frequency']]), \
s + "requires a site with weibull information"
assert normalize_probabilities is False, \
s + "cannot be combined with normalize_probabilities"
assert np.all(self.Power.isel(ws=0) == 0) and np.all(self.Power.isel(ws=-1) == 0),\
assert np.all(self.Power.isel(ws=0) == 0) and np.all(self.Power.isel(ws=-1) == 0), \
s + "requires first wind speed to have no power (just below cut-in)"
assert np.all(self.Power.isel(ws=-1) == 0),\
assert np.all(self.Power.isel(ws=-1) == 0), \
s + "requires last wind speed to have no power (just above cut-out)"
weighted_power = weibull.WeightedPower(
self.ws.values,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment