Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
NVROOT = 0
C
C Link together variables having same degree
DO 30 IS = 1,N
K = IPE(IS)
IF (K.GT.0) THEN
ID = IW(K) + 1
NS = IPD(ID)
IF (NS.GT.0) LST(NS) = IS
NXT(IS) = NS
IPD(ID) = IS
LST(IS) = -ID
ELSE
C We have a variable that can be eliminated at once because there is
C no off-diagonal nonzero in its row.
NEL = NEL + 1
FLAG(IS) = -1
NXT(IS) = 0
LST(IS) = 0
ENDIF
30 CONTINUE
C
C Start of main loop
C
DO 340 ML = 1,N
C Leave loop if all variables have been eliminated.
IF (NEL+NVROOT+1.GE.N) GO TO 350
C
C Find next supervariable for elimination.
DO 40 ID = MD,N
MS = IPD(ID)
IF (MS.GT.0) GO TO 50
40 CONTINUE
50 MD = ID
C Nvpiv holds the number of variables in the pivot.
NVPIV = NV(MS)
C
C Remove chosen variable from linked list
NS = NXT(MS)
NXT(MS) = 0
LST(MS) = 0
IF (NS.GT.0) LST(NS) = -ID
IPD(ID) = NS
ME = MS
NEL = NEL + NVPIV
C IDN holds the degree of the new element.
IDN = 0
C
C Run through the list of the pivotal supervariable, setting tree
C pointers and constructing new list of supervariables.
C KP is a pointer to the current position in the old list.
KP = IPE(ME)
FLAG(MS) = -1
C IP points to the start of the new list.
IP = IWFR
C LEN holds the length of the list associated with the pivot.
LEN = IW(KP)
DO 140 KP1 = 1,LEN
KP = KP + 1
KE = IW(KP)
C Jump if KE is an element that has not been merged into another.
IF (FLAG(KE).LE.-2) GO TO 60
C Jump if KE is an element that has been merged into another or is
C a supervariable that has been eliminated.
IF (FLAG(KE).LE.0) THEN
IF (IPE(KE).NE.-ROOT) GO TO 140
C KE has been merged into the root
KE = ROOT
IF (FLAG(KE).LE.0) GO TO 140
END IF
C We have a supervariable. Prepare to search rest of list.
JP = KP - 1
LN = LEN - KP1 + 1
IE = MS
GO TO 70
C Search variable list of element KE, using JP as a pointer to it.
60 IE = KE
JP = IPE(IE)
LN = IW(JP)
C
C Search for different supervariables and add them to the new list,
C compressing when necessary. This loop is executed once for
C each element in the list and once for all the supervariables
C in the list.
70 DO 130 JP1 = 1,LN
JP = JP + 1
IS = IW(JP)
C Jump if IS is not a principal variable or has already been counted.
IF (FLAG(IS).LE.0) THEN
IF (IPE(IS).EQ.-ROOT) THEN
C IS has been merged into the root
IS = ROOT
IW(JP) = ROOT
IF (FLAG(IS).LE.0) GO TO 130
ELSE
GO TO 130
END IF
END IF
FLAG(IS) = 0
C To fix Nick bug need to add one here to store (eventually) length
C of new row
IF (IWFR .GE. LW-1) THEN
C Logic was previously as below
CCC IF (IWFR.LT.LW) GO TO 100
C Prepare for compressing IW by adjusting pointers and
C lengths so that the lists being searched in the inner and outer
C loops contain only the remaining entries.
IPE(MS) = KP
IW(KP) = LEN - KP1
IPE(IE) = JP
IW(JP) = LN - JP1
C Compress IW
CALL MA27UD(N,IPE,IW,IP-1,LWFR,NCMPA)
C Copy new list forward
JP2 = IWFR - 1
IWFR = LWFR
IF (IP.GT.JP2) GO TO 90
DO 80 JP = IP,JP2
IW(IWFR) = IW(JP)
IWFR = IWFR + 1
80 CONTINUE
C Adjust pointers for the new list and the lists being searched.
90 IP = LWFR
JP = IPE(IE)
KP = IPE(ME)
ENDIF
C Store IS in new list.
IW(IWFR) = IS
IDN = IDN + NV(IS)
IWFR = IWFR + 1
C Remove IS from degree linked list
LS = LST(IS)
LST(IS) = 0
NS = NXT(IS)
NXT(IS) = 0
IF (NS.GT.0) LST(NS) = LS
IF (LS.LT.0) THEN
LS = -LS
IPD(LS) = NS
ELSE IF (LS.GT.0) THEN
NXT(LS) = NS
END IF
130 CONTINUE
C Jump if we have just been searching the variables at the end of
C the list of the pivot.
IF (IE.EQ.MS) GO TO 150
C Set tree pointer and flag to indicate element IE is absorbed into
C new element ME.
IPE(IE) = -ME
FLAG(IE) = -1
140 CONTINUE
C Store the degree of the pivot.
150 NV(MS) = IDN + NVPIV
C Jump if new element is null.
IF (IWFR.EQ.IP) THEN
IPE(ME) = 0
GO TO 340
ENDIF
K1 = IP
K2 = IWFR - 1
C
C Run through new list of supervariables revising each associated list,
C recalculating degrees and removing duplicates.
LIMIT = NINT(FRATIO*(N-NEL))
DO 310 K = K1,K2
IS = IW(K)
IF (IS.EQ.ROOT) GO TO 310
IF (NFLG.GT.2) GO TO 170
C Reset FLAG values to +/-IOVFLO.
DO 160 I = 1,N
IF (FLAG(I).GT.0) FLAG(I) = IOVFLO
IF (FLAG(I).LE.-2) FLAG(I) = -IOVFLO
160 CONTINUE
NFLG = IOVFLO
C Reduce NFLG by one to cater for this supervariable.
170 NFLG = NFLG - 1
C Begin with the degree of the new element. Its variables must always
C be counted during the degree calculation and they are already
C flagged with the value 0.
ID = IDN
C Run through the list associated with supervariable IS
KP1 = IPE(IS) + 1
C NP points to the next entry in the revised list.
NP = KP1
KP2 = IW(KP1-1) + KP1 - 1
DO 220 KP = KP1,KP2
KE = IW(KP)
C Test whether KE is an element, a redundant entry or a supervariable.
IF (FLAG(KE).EQ.-1) THEN
IF (IPE(KE).NE.-ROOT) GO TO 220
C KE has been merged into the root
KE = ROOT
IW(KP) = ROOT
IF (FLAG(KE).EQ.-1) GO TO 220
END IF
IF (FLAG(KE).GE.0) GO TO 230
C Search list of element KE, revising the degree when new variables
C found.
JP1 = IPE(KE) + 1
JP2 = IW(JP1-1) + JP1 - 1
IDL = ID
DO 190 JP = JP1,JP2
JS = IW(JP)
C Jump if JS has already been counted.
IF (FLAG(JS).LE.NFLG) GO TO 190
ID = ID + NV(JS)
FLAG(JS) = NFLG
190 CONTINUE
C Jump if one or more new supervariables were found.
IF (ID.GT.IDL) GO TO 210
C Check whether every variable of element KE is in new element ME.
DO 200 JP = JP1,JP2
JS = IW(JP)
IF (FLAG(JS).NE.0) GO TO 210
200 CONTINUE
C Set tree pointer and FLAG to indicate that element KE is absorbed
C into new element ME.
IPE(KE) = -ME
FLAG(KE) = -1
GO TO 220
C Store element KE in the revised list for supervariable IS and flag it.
210 IW(NP) = KE
FLAG(KE) = -NFLG
NP = NP + 1
220 CONTINUE
NP0 = NP
GO TO 250
C Treat the rest of the list associated with supervariable IS. It
C consists entirely of supervariables.
230 KP0 = KP
NP0 = NP
DO 240 KP = KP0,KP2
KS = IW(KP)
IF (FLAG(KS).LE.NFLG) THEN
IF (IPE(KS).EQ.-ROOT) THEN
KS = ROOT
IW(KP) = ROOT
IF (FLAG(KS).LE.NFLG) GO TO 240
ELSE
GO TO 240
END IF
END IF
C Add to degree, flag supervariable KS and add it to new list.
ID = ID + NV(KS)
FLAG(KS) = NFLG
IW(NP) = KS
NP = NP + 1
240 CONTINUE
C Move first supervariable to end of list, move first element to end
C of element part of list and add new element to front of list.
250 IF (ID.GE.LIMIT) GO TO 295
IW(NP) = IW(NP0)
IW(NP0) = IW(KP1)
IW(KP1) = ME
C Store the new length of the list.
IW(KP1-1) = NP - KP1 + 1
C
C Check whether row is is identical to another by looking in linked
C list of supervariables with degree ID at those whose lists have
C first entry ME. Note that those containing ME come first so the
C search can be terminated when a list not starting with ME is
C found.
JS = IPD(ID)
DO 280 L = 1,N
IF (JS.LE.0) GO TO 300
KP1 = IPE(JS) + 1
IF (IW(KP1).NE.ME) GO TO 300
C JS has same degree and is active. Check if identical to IS.
KP2 = KP1 - 1 + IW(KP1-1)
DO 260 KP = KP1,KP2
IE = IW(KP)
C Jump if IE is a supervariable or an element not in the list of IS.
IF (ABS(FLAG(IE)+0).GT.NFLG) GO TO 270
260 CONTINUE
GO TO 290
270 JS = NXT(JS)
280 CONTINUE
C Supervariable amalgamation. Row IS is identical to row JS.
C Regard all variables in the two supervariables as being in IS. Set
C tree pointer, FLAG and NV entries.
290 IPE(JS) = -IS
NV(IS) = NV(IS) + NV(JS)
NV(JS) = 0
FLAG(JS) = -1
C Replace JS by IS in linked list.
NS = NXT(JS)
LS = LST(JS)
IF (NS.GT.0) LST(NS) = IS
IF (LS.GT.0) NXT(LS) = IS
LST(IS) = LS
NXT(IS) = NS
LST(JS) = 0
NXT(JS) = 0
IF (IPD(ID).EQ.JS) IPD(ID) = IS
GO TO 310
C Treat IS as full. Merge it into the root node.
295 IF (NVROOT.EQ.0) THEN
ROOT = IS
IPE(IS) = 0
ELSE
IW(K) = ROOT
IPE(IS) = -ROOT
NV(ROOT) = NV(ROOT) + NV(IS)
NV(IS) = 0
FLAG(IS) = -1
END IF
NVROOT = NV(ROOT)
GO TO 310
C Insert IS into linked list of supervariables of same degree.
300 NS = IPD(ID)
IF (NS.GT.0) LST(NS) = IS
NXT(IS) = NS
IPD(ID) = IS
LST(IS) = -ID
MD = MIN(MD,ID)
310 CONTINUE
C
C Reset flags for supervariables in newly created element and
C remove those absorbed into others.
DO 320 K = K1,K2
IS = IW(K)
IF (NV(IS).EQ.0) GO TO 320
FLAG(IS) = NFLG
IW(IP) = IS
IP = IP + 1
320 CONTINUE
FLAG(ME) = -NFLG
C Move first entry to end to make room for length.
IW(IP) = IW(K1)
IW(K1) = IP - K1
C Set pointer for new element and reset IWFR.
IPE(ME) = K1
IWFR = IP + 1
C End of main loop
340 CONTINUE
C
C Absorb any remaining variables into the root
350 DO 360 IS = 1,N
IF(NXT(IS).NE.0 .OR. LST(IS).NE.0) THEN
IF (NVROOT.EQ.0) THEN
ROOT = IS
IPE(IS) = 0
ELSE
IPE(IS) = -ROOT
END IF
NVROOT = NVROOT + NV(IS)
NV(IS) = 0
END IF
360 CONTINUE
C Link any remaining elements to the root
DO 370 IE = 1,N
IF (IPE(IE).GT.0) IPE(IE) = -ROOT
370 CONTINUE
IF(NVROOT.GT.0)NV(ROOT)=NVROOT
END
SUBROUTINE MA27UD(N,IPE,IW,LW,IWFR,NCMPA)
C COMPRESS LISTS HELD BY MA27H/HD AND MA27K/KD IN IW AND ADJUST POINTERS
C IN IPE TO CORRESPOND.
C N IS THE MATRIX ORDER. IT IS NOT ALTERED.
C IPE(I) POINTS TO THE POSITION IN IW OF THE START OF LIST I OR IS
C ZERO IF THERE IS NO LIST I. ON EXIT IT POINTS TO THE NEW POSITION.
C IW HOLDS THE LISTS, EACH HEADED BY ITS LENGTH. ON OUTPUT THE SAME
C LISTS ARE HELD, BUT THEY ARE NOW COMPRESSED TOGETHER.
C LW HOLDS THE LENGTH OF IW. IT IS NOT ALTERED.
C IWFR NEED NOT BE SET ON ENTRY. ON EXIT IT POINTS TO THE FIRST FREE
C LOCATION IN IW.
C ON RETURN IT IS SET TO THE FIRST FREE LOCATION IN IW.
C NCMPA see INFO(11) in MA27A/AD.
C
C .. Scalar Arguments ..
INTEGER IWFR,LW,N,NCMPA
C ..
C .. Array Arguments ..
INTEGER IPE(N),IW(LW)
C ..
C .. Local Scalars ..
INTEGER I,IR,K,K1,K2,LWFR
C ..
C .. Executable Statements ..
NCMPA = NCMPA + 1
C PREPARE FOR COMPRESSING BY STORING THE LENGTHS OF THE
C LISTS IN IPE AND SETTING THE FIRST ENTRY OF EACH LIST TO
C -(LIST NUMBER).
DO 10 I = 1,N
K1 = IPE(I)
IF (K1.LE.0) GO TO 10
IPE(I) = IW(K1)
IW(K1) = -I
10 CONTINUE
C
C COMPRESS
C IWFR POINTS JUST BEYOND THE END OF THE COMPRESSED FILE.
C LWFR POINTS JUST BEYOND THE END OF THE UNCOMPRESSED FILE.
IWFR = 1
LWFR = IWFR
DO 60 IR = 1,N
IF (LWFR.GT.LW) GO TO 70
C SEARCH FOR THE NEXT NEGATIVE ENTRY.
DO 20 K = LWFR,LW
IF (IW(K).LT.0) GO TO 30
20 CONTINUE
GO TO 70
C PICK UP ENTRY NUMBER, STORE LENGTH IN NEW POSITION, SET NEW POINTER
C AND PREPARE TO COPY LIST.
30 I = -IW(K)
IW(IWFR) = IPE(I)
IPE(I) = IWFR
K1 = K + 1
K2 = K + IW(IWFR)
IWFR = IWFR + 1
IF (K1.GT.K2) GO TO 50
C COPY LIST TO NEW POSITION.
DO 40 K = K1,K2
IW(IWFR) = IW(K)
IWFR = IWFR + 1
40 CONTINUE
50 LWFR = K2 + 1
60 CONTINUE
70 RETURN
END
SUBROUTINE MA27JD(N,NZ,IRN,ICN,PERM,IW,LW,IPE,IQ,FLAG,IWFR,
+ ICNTL,INFO)
C
C SORT PRIOR TO CALLING ANALYSIS ROUTINE MA27K/KD.
C
C GIVEN THE POSITIONS OF THE OFF-DIAGONAL NON-ZEROS OF A SYMMETRIC
C MATRIX AND A PERMUTATION, CONSTRUCT THE SPARSITY PATTERN
C OF THE STRICTLY UPPER TRIANGULAR PART OF THE PERMUTED MATRIX.
C EITHER ONE OF A PAIR (I,J),(J,I) MAY BE USED TO REPRESENT
C THE PAIR. DIAGONAL ELEMENTS ARE IGNORED. NO CHECK IS MADE
C FOR DUPLICATE ELEMENTS UNLESS ANY ROW HAS MORE THAN ICNTL(4)
C NON-ZEROS, IN WHICH CASE DUPLICATES ARE REMOVED.
C
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C NZ MUST BE SET TO THE NUMBER OF NON-ZEROS INPUT. IT IS NOT
C ALTERED.
C IRN(I),I=1,2,...,NZ MUST BE SET TO THE ROW INDICES OF THE
C NON-ZEROS ON INPUT. IT IS NOT ALTERED UNLESS EQUIVALENCED WITH IW.
C IRN(1) MAY BE EQUIVALENCED WITH IW(1).
C ICN(I),I=1,2,...,NZ MUST BE SET TO THE COLUMN INDICES OF THE
C NON-ZEROS ON INPUT. IT IS NOT ALTERED UNLESS EQUIVALENCED
C WITH IW.ICN(1) MAY BE EQUIVELENCED WITH IW(K),K.GT.NZ.
C PERM(I) MUST BE SET TO HOLD THE POSITION OF VARIABLE I IN THE
C PERMUTED ORDER. IT IS NOT ALTERED.
C IW NEED NOT BE SET ON INPUT. ON OUTPUT IT CONTAINS LISTS OF
C COLUMN NUMBERS, EACH LIST BEING HEADED BY ITS LENGTH.
C LW MUST BE SET TO THE LENGTH OF IW. IT MUST BE AT LEAST
C MAX(NZ,N+(NO. OF OFF-DIAGONAL NON-ZEROS)). IT IS NOT ALTERED.
C IPE NEED NOT BE SET ON INPUT. ON OUTPUT IPE(I) POINTS TO THE START OF
C THE ENTRY IN IW FOR ROW I, OR IS ZERO IF THERE IS NO ENTRY.
C IQ NEED NOT BE SET. ON OUTPUT IQ(I) CONTAINS THE NUMBER OF
C OFF-DIAGONAL NON-ZEROS IN ROW I, INCLUDING DUPLICATES.
C FLAG IS USED FOR WORKSPACE TO HOLD FLAGS TO PERMIT DUPLICATE
C ENTRIES TO BE IDENTIFIED QUICKLY.
C IWFR NEED NOT BE SET ON INPUT. ON OUTPUT IT POINTS TO THE FIRST
C UNUSED LOCATION IN IW.
C ICNTL is an INTEGER array of length 30, see MA27A/AD.
C INFO is an INTEGER array of length 20, see MA27A/AD.
C
C .. Scalar Arguments ..
INTEGER IWFR,LW,N,NZ
C ..
C .. Array Arguments ..
INTEGER FLAG(N),ICN(*),IPE(N),IQ(N),IRN(*),IW(LW),PERM(N)
INTEGER ICNTL(30),INFO(20)
C ..
C .. Local Scalars ..
INTEGER I,ID,IN,J,JDUMMY,K,K1,K2,L,LBIG,LEN
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX
C ..
C .. Executable Statements ..
C
C INITIALIZE INFO(1), INFO(2) AND IQ
INFO(1) = 0
INFO(2) = 0
DO 10 I = 1,N
IQ(I) = 0
10 CONTINUE
C
C COUNT THE NUMBERS OF NON-ZEROS IN THE ROWS, PRINT WARNINGS ABOUT
C OUT-OF-RANGE INDICES AND TRANSFER GENUINE ROW NUMBERS
C (NEGATED) INTO IW.
IF (NZ.EQ.0) GO TO 110
DO 100 K = 1,NZ
I = IRN(K)
J = ICN(K)
IW(K) = -I
IF(I.LT.J) THEN
IF (I.GE.1 .AND. J.LE.N) GO TO 80
ELSE IF(I.GT.J) THEN
IF (J.GE.1 .AND. I.LE.N) GO TO 80
ELSE
IW(K) = 0
IF (I.GE.1 .AND. I.LE.N) GO TO 100
END IF
INFO(2) = INFO(2) + 1
INFO(1) = 1
IW(K) = 0
IF (INFO(2).LE.1 .AND. ICNTL(2).GT.0) THEN
WRITE (ICNTL(2),FMT=60) INFO(1)
END IF
60 FORMAT (' *** WARNING MESSAGE FROM SUBROUTINE MA27AD',
+ ' *** INFO(1) =',I2)
IF (INFO(2).LE.10 .AND. ICNTL(2).GT.0) THEN
WRITE (ICNTL(2),FMT=70) K,I,J
END IF
70 FORMAT (I6,'TH NON-ZERO (IN ROW',I6,' AND COLUMN',I6,
+ ') IGNORED')
GO TO 100
80 IF (PERM(J).GT.PERM(I)) GO TO 90
IQ(J) = IQ(J) + 1
GO TO 100
90 IQ(I) = IQ(I) + 1
100 CONTINUE
C
C ACCUMULATE ROW COUNTS TO GET POINTERS TO ROW ENDS
C IN IPE.
110 IWFR = 1
LBIG = 0
DO 120 I = 1,N
L = IQ(I)
LBIG = MAX(L,LBIG)
IWFR = IWFR + L
IPE(I) = IWFR - 1
120 CONTINUE
C
C PERFORM IN-PLACE SORT
IF (NZ.EQ.0) GO TO 250
DO 160 K = 1,NZ
I = -IW(K)
IF (I.LE.0) GO TO 160
L = K
IW(K) = 0
DO 150 ID = 1,NZ
J = ICN(L)
IF (PERM(I).LT.PERM(J)) GO TO 130
L = IPE(J)
IPE(J) = L - 1
IN = IW(L)
IW(L) = I
GO TO 140
130 L = IPE(I)
IPE(I) = L - 1
IN = IW(L)
IW(L) = J
140 I = -IN
IF (I.LE.0) GO TO 160
150 CONTINUE
160 CONTINUE
C
C MAKE ROOM IN IW FOR ROW LENGTHS AND INITIALIZE FLAG.
K = IWFR - 1
L = K + N
IWFR = L + 1
DO 190 I = 1,N
FLAG(I) = 0
J = N + 1 - I
LEN = IQ(J)
IF (LEN.LE.0) GO TO 180
DO 170 JDUMMY = 1,LEN
IW(L) = IW(K)
K = K - 1
L = L - 1
170 CONTINUE
180 IPE(J) = L
L = L - 1
190 CONTINUE
IF (LBIG.GE.ICNTL(4)) GO TO 210
C
C PLACE ROW LENGTHS IN IW
DO 200 I = 1,N
K = IPE(I)
IW(K) = IQ(I)
IF (IQ(I).EQ.0) IPE(I) = 0
200 CONTINUE
GO TO 250
C
C
C REMOVE DUPLICATE ENTRIES
210 IWFR = 1
DO 240 I = 1,N
K1 = IPE(I) + 1
K2 = IPE(I) + IQ(I)
IF (K1.LE.K2) GO TO 220
IPE(I) = 0
GO TO 240
220 IPE(I) = IWFR
IWFR = IWFR + 1
DO 230 K = K1,K2
J = IW(K)
IF (FLAG(J).EQ.I) GO TO 230
IW(IWFR) = J
IWFR = IWFR + 1
FLAG(J) = I
230 CONTINUE
K = IPE(I)
IW(K) = IWFR - K - 1
240 CONTINUE
250 RETURN
END
SUBROUTINE MA27KD(N,IPE,IW,LW,IWFR,IPS,IPV,NV,FLAG,NCMPA)
C
C USING A GIVEN PIVOTAL SEQUENCE AND A REPRESENTATION OF THE MATRIX THAT
C INCLUDES ONLY NON-ZEROS OF THE STRICTLY UPPER-TRIANGULAR PART
C OF THE PERMUTED MATRIX, CONSTRUCT TREE POINTERS.
C
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C IPE(I) MUST BE SET TO POINT TO THE POSITION IN IW OF THE
C START OF ROW I OR HAVE THE VALUE ZERO IF ROW I HAS NO OFF-
C DIAGONAL NON-ZEROS. DURING EXECUTION IT IS USED AS FOLLOWS.
C IF VARIABLE I IS ELIMINATED THEN IPE(I) POINTS TO THE LIST
C OF VARIABLES FOR CREATED ELEMENT I. IF ELEMENT I IS
C ABSORBED INTO NEWLY CREATED ELEMENT J THEN IPE(I)=-J.
C IW MUST BE SET ON ENTRY TO HOLD LISTS OF VARIABLES BY
C ROWS, EACH LIST BEING HEADED BY ITS LENGTH. WHEN A VARIABLE
C IS ELIMINATED ITS LIST IS REPLACED BY A LIST OF VARIABLES
C IN THE NEW ELEMENT.
C LW MUST BE SET TO THE LENGTH OF IW. IT IS NOT ALTERED.
C IWFR MUST BE SET TO THE POSITION IN IW OF THE FIRST FREE VARIABLE.
C IT IS REVISED DURING EXECUTION, CONTINUING TO HAVE THIS MEANING.
C IPS(I) MUST BE SET TO THE POSITION OF VARIABLE I IN THE REQUIRED
C ORDERING. IT IS NOT ALTERED.
C IPV NEED NOT BE SET. IPV(K) IS SET TO HOLD THE K TH VARIABLE
C IN PIVOT ORDER.
C NV NEED NOT BE SET. IF VARIABLE J HAS NOT BEEN ELIMINATED THEN
C THE LAST ELEMENT WHOSE LEADING VARIABLE (VARIABLE EARLIEST
C IN THE PIVOT SEQUENCE) IS J IS ELEMENT NV(J). IF ELEMENT J
C EXISTS THEN THE LAST ELEMENT HAVING THE SAME LEADING
C VARIABLE IS NV(J). IN BOTH CASES NV(J)=0 IF THERE IS NO SUCH
C ELEMENT. IF ELEMENT J HAS BEEN MERGED INTO A LATER ELEMENT
C THEN NV(J) IS THE DEGREE AT THE TIME OF ELIMINATION.
C FLAG IS USED AS WORKSPACE FOR VARIABLE FLAGS.
C FLAG(JS)=ME IF JS HAS BEEN INCLUDED IN THE LIST FOR ME.
C NCMPA see INFO(11) in MA27A/AD.
C
C .. Scalar Arguments ..
INTEGER IWFR,LW,N,NCMPA
C ..
C .. Array Arguments ..
INTEGER FLAG(N),IPE(N),IPS(N),IPV(N),IW(LW),NV(N)
C ..
C .. Local Scalars ..
INTEGER I,IE,IP,J,JE,JP,JP1,JP2,JS,KDUMMY,LN,LWFR,ME,MINJS,ML,MS
C ..
C .. External Subroutines ..
EXTERNAL MA27UD
C ..
C .. Intrinsic Functions ..
INTRINSIC MIN
C ..
C .. Executable Statements ..
C
C INITIALIZATIONS
DO 10 I = 1,N
FLAG(I) = 0
NV(I) = 0
J = IPS(I)
IPV(J) = I
10 CONTINUE
NCMPA = 0
C
C START OF MAIN LOOP
C
DO 100 ML = 1,N
C ME=MS IS THE NAME OF THE VARIABLE ELIMINATED AND
C OF THE ELEMENT CREATED IN THE MAIN LOOP.
MS = IPV(ML)
ME = MS
FLAG(MS) = ME
C
C MERGE ROW MS WITH ALL THE ELEMENTS HAVING MS AS LEADING VARIABLE.
C IP POINTS TO THE START OF THE NEW LIST.
IP = IWFR
C MINJS IS SET TO THE POSITION IN THE ORDER OF THE LEADING VARIABLE
C IN THE NEW LIST.
MINJS = N
IE = ME
DO 70 KDUMMY = 1,N
C SEARCH VARIABLE LIST OF ELEMENT IE.
C JP POINTS TO THE CURRENT POSITION IN THE LIST BEING SEARCHED.
JP = IPE(IE)
C LN IS THE LENGTH OF THE LIST BEING SEARCHED.
LN = 0
IF (JP.LE.0) GO TO 60
LN = IW(JP)
C
C SEARCH FOR DIFFERENT VARIABLES AND ADD THEM TO LIST,
C COMPRESSING WHEN NECESSARY
DO 50 JP1 = 1,LN
JP = JP + 1
C PLACE NEXT VARIABLE IN JS.
JS = IW(JP)
C JUMP IF VARIABLE HAS ALREADY BEEN INCLUDED.
IF (FLAG(JS).EQ.ME) GO TO 50
FLAG(JS) = ME
IF (IWFR.LT.LW) GO TO 40
C PREPARE FOR COMPRESSING IW BY ADJUSTING POINTER TO AND LENGTH OF
C THE LIST FOR IE TO REFER TO THE REMAINING ENTRIES.
IPE(IE) = JP
IW(JP) = LN - JP1
C COMPRESS IW.
CALL MA27UD(N,IPE,IW,IP-1,LWFR,NCMPA)
C COPY NEW LIST FORWARD
JP2 = IWFR - 1
IWFR = LWFR
IF (IP.GT.JP2) GO TO 30
DO 20 JP = IP,JP2
IW(IWFR) = IW(JP)
IWFR = IWFR + 1
20 CONTINUE
30 IP = LWFR
JP = IPE(IE)
C ADD VARIABLE JS TO NEW LIST.
40 IW(IWFR) = JS
MINJS = MIN(MINJS,IPS(JS)+0)
IWFR = IWFR + 1
50 CONTINUE
C RECORD ABSORPTION OF ELEMENT IE INTO NEW ELEMENT.
60 IPE(IE) = -ME
C PICK UP NEXT ELEMENT WITH LEADING VARIABLE MS.
JE = NV(IE)
C STORE DEGREE OF IE.
NV(IE) = LN + 1
IE = JE
C LEAVE LOOP IF THERE ARE NO MORE ELEMENTS.
IF (IE.EQ.0) GO TO 80
70 CONTINUE
80 IF (IWFR.GT.IP) GO TO 90
C DEAL WITH NULL NEW ELEMENT.
IPE(ME) = 0
NV(ME) = 1
GO TO 100
C LINK NEW ELEMENT WITH OTHERS HAVING SAME LEADING VARIABLE.
90 MINJS = IPV(MINJS)
NV(ME) = NV(MINJS)
NV(MINJS) = ME
C MOVE FIRST ENTRY IN NEW LIST TO END TO ALLOW ROOM FOR LENGTH AT
C FRONT. SET POINTER TO FRONT.
IW(IWFR) = IW(IP)
IW(IP) = IWFR - IP
IPE(ME) = IP
IWFR = IWFR + 1
100 CONTINUE
RETURN
END
SUBROUTINE MA27LD(N,IPE,NV,IPS,NE,NA,ND,NSTEPS,NEMIN)
C
C TREE SEARCH
C
C GIVEN SON TO FATHER TREE POINTERS, PERFORM DEPTH-FIRST
C SEARCH TO FIND PIVOT ORDER AND NUMBER OF ELIMINATIONS
C AND ASSEMBLIES AT EACH STAGE.
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C IPE(I) MUST BE SET EQUAL TO -(FATHER OF NODE I) OR ZERO IF
C NODE IS A ROOT. IT IS ALTERED TO POINT TO ITS NEXT
C YOUNGER BROTHER IF IT HAS ONE, BUT OTHERWISE IS NOT
C CHANGED.
C NV(I) MUST BE SET TO ZERO IF NO VARIABLES ARE ELIMINATED AT NODE
C I AND TO THE DEGREE OTHERWISE. ONLY LEAF NODES CAN HAVE
C ZERO VALUES OF NV(I). NV IS NOT ALTERED.
C IPS(I) NEED NOT BE SET. IT IS USED TEMPORARILY TO HOLD
C -(ELDEST SON OF NODE I) IF IT HAS ONE AND 0 OTHERWISE. IT IS
C EVENTUALLY SET TO HOLD THE POSITION OF NODE I IN THE ORDER.
C NE(IS) NEED NOT BE SET. IT IS SET TO THE NUMBER OF VARIABLES
C ELIMINATED AT STAGE IS OF THE ELIMINATION.
C NA(IS) NEED NOT BE SET. IT IS SET TO THE NUMBER OF ELEMENTS
C ASSEMBLED AT STAGE IS OF THE ELIMINATION.
C ND(IS) NEED NOT BE SET. IT IS SET TO THE DEGREE AT STAGE IS OF
C THE ELIMINATION.
C NSTEPS NEED NOT BE SET. IT IS SET TO THE NUMBER OF ELIMINATION
C STEPS.
C NEMIN see ICNTL(5) in MA27A/AD.
C
C .. Scalar Arguments ..
INTEGER N,NSTEPS,NEMIN
C ..
C .. Array Arguments ..
INTEGER IPE(N),IPS(N),NA(N),ND(N),NE(N),NV(N)
C ..
C .. Local Scalars ..
INTEGER I,IB,IF,IL,IS,ISON,K,L,NR
C ..
C .. Executable Statements ..
C INITIALIZE IPS AND NE.
DO 10 I = 1,N
IPS(I) = 0
NE(I) = 0
10 CONTINUE
C
C SET IPS(I) TO -(ELDEST SON OF NODE I) AND IPE(I) TO NEXT YOUNGER
C BROTHER OF NODE I IF IT HAS ONE.
C FIRST PASS IS FOR NODES WITHOUT ELIMINATIONS.
DO 20 I = 1,N
IF (NV(I).GT.0) GO TO 20
IF = -IPE(I)
IS = -IPS(IF)
IF (IS.GT.0) IPE(I) = IS
IPS(IF) = -I
20 CONTINUE
C NR IS DECREMENTED FOR EACH ROOT NODE. THESE ARE STORED IN
C NE(I),I=NR,N.
NR = N + 1
C SECOND PASS TO ADD NODES WITH ELIMINATIONS.
DO 50 I = 1,N
IF (NV(I).LE.0) GO TO 50
C NODE IF IS THE FATHER OF NODE I.
IF = -IPE(I)
IF (IF.EQ.0) GO TO 40
IS = -IPS(IF)
C JUMP IF NODE IF HAS NO SONS YET.
IF (IS.LE.0) GO TO 30
C SET POINTER TO NEXT BROTHER
IPE(I) = IS
C NODE I IS ELDEST SON OF NODE IF.
30 IPS(IF) = -I
GO TO 50
C WE HAVE A ROOT
40 NR = NR - 1
NE(NR) = I
50 CONTINUE
C
C DEPTH-FIRST SEARCH.
C IL HOLDS THE CURRENT TREE LEVEL. ROOTS ARE AT LEVEL N, THEIR SONS
C ARE AT LEVEL N-1, ETC.
C IS HOLDS THE CURRENT ELIMINATION STAGE. WE ACCUMULATE THE NUMBER
C OF ELIMINATIONS AT STAGE IS DIRECTLY IN NE(IS). THE NUMBER OF
C ASSEMBLIES IS ACCUMULATED TEMPORARILY IN NA(IL), FOR TREE
C LEVEL IL, AND IS TRANSFERED TO NA(IS) WHEN WE REACH THE
C APPROPRIATE STAGE IS.
IS = 1
C I IS THE CURRENT NODE.
I = 0
DO 160 K = 1,N
IF (I.GT.0) GO TO 60
C PICK UP NEXT ROOT.
I = NE(NR)
NE(NR) = 0
NR = NR + 1
IL = N
NA(N) = 0
C GO TO SON FOR AS LONG AS POSSIBLE, CLEARING FATHER-SON POINTERS
C IN IPS AS EACH IS USED AND SETTING NA(IL)=0 FOR ALL LEVELS
C REACHED.
60 DO 70 L = 1,N
IF (IPS(I).GE.0) GO TO 80
ISON = -IPS(I)
IPS(I) = 0
I = ISON
IL = IL - 1
NA(IL) = 0
70 CONTINUE
C RECORD POSITION OF NODE I IN THE ORDER.
80 IPS(I) = K
NE(IS) = NE(IS) + 1
C JUMP IF NODE HAS NO ELIMINATIONS.
IF (NV(I).LE.0) GO TO 120
IF (IL.LT.N) NA(IL+1) = NA(IL+1) + 1
NA(IS) = NA(IL)
ND(IS) = NV(I)
C CHECK FOR STATIC CONDENSATION
IF (NA(IS).NE.1) GO TO 90
IF (ND(IS-1)-NE(IS-1).EQ.ND(IS)) GO TO 100
C CHECK FOR SMALL NUMBERS OF ELIMINATIONS IN BOTH LAST TWO STEPS.
90 IF (NE(IS).GE.NEMIN) GO TO 110
IF (NA(IS).EQ.0) GO TO 110
IF (NE(IS-1).GE.NEMIN) GO TO 110
C COMBINE THE LAST TWO STEPS
100 NA(IS-1) = NA(IS-1) + NA(IS) - 1
ND(IS-1) = ND(IS) + NE(IS-1)
NE(IS-1) = NE(IS) + NE(IS-1)
NE(IS) = 0
GO TO 120
110 IS = IS + 1
120 IB = IPE(I)
IF (IB.GE.0) THEN
C NODE I HAS A BROTHER OR IS A ROOT
IF (IB.GT.0) NA(IL) = 0
I = IB
ELSE
C GO TO FATHER OF NODE I
I = -IB
IL = IL + 1
END IF
160 CONTINUE
NSTEPS = IS - 1
RETURN
END
SUBROUTINE MA27MD(N,NZ,IRN,ICN,PERM,NA,NE,ND,NSTEPS,LSTKI,LSTKR,
+ IW,INFO,OPS)
C
C STORAGE AND OPERATION COUNT EVALUATION.
C
C EVALUATE NUMBER OF OPERATIONS AND SPACE REQUIRED BY FACTORIZATION
C USING MA27B/BD. THE VALUES GIVEN ARE EXACT ONLY IF NO NUMERICAL
C PIVOTING IS PERFORMED AND THEN ONLY IF IRN(1) WAS NOT
C EQUIVALENCED TO IW(1) BY THE USER BEFORE CALLING MA27A/AD. IF
C THE EQUIVALENCE HAS BEEN MADE ONLY AN UPPER BOUND FOR NIRNEC
C AND NRLNEC CAN BE CALCULATED ALTHOUGH THE OTHER COUNTS WILL
C STILL BE EXACT.
C
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C NZ MUST BE SET TO THE NUMBER OF NON-ZEROS INPUT. IT IS NOT ALTERED.
C IRN,ICN. UNLESS IRN(1) HAS BEEN EQUIVALENCED TO IW(1)
C IRN,ICN MUST BE SET TO THE ROW AND COLUMN INDICES OF THE
C NON-ZEROS ON INPUT. THEY ARE NOT ALTERED BY MA27M/MD.
C PERM MUST BE SET TO THE POSITION IN THE PIVOT ORDER OF EACH ROW.
C IT IS NOT ALTERED.
C NA,NE,ND MUST BE SET TO HOLD, FOR EACH TREE NODE, THE NUMBER OF STACK
C ELEMENTS ASSEMBLED, THE NUMBER OF ELIMINATIONS AND THE SIZE OF
C THE ASSEMBLED FRONT MATRIX RESPECTIVELY. THEY ARE NOT ALTERED.
C NSTEPS MUST BE SET TO HOLD THE NUMBER OF TREE NODES. IT IS NOT
C ALTERED.
C LSTKI IS USED AS A WORK ARRAY BY MA27M/MD.
C LSTKR. IF IRN(1) IS EQUIVALENCED TO IW(1) THEN LSTKR(I)
C MUST HOLD THE TOTAL NUMBER OF OFF-DIAGONAL ENTRIES (INCLUDING
C DUPLICATES) IN ROW I (I=1,..,N) OF THE ORIGINAL MATRIX. IT
C IS USED AS WORKSPACE BY MA27M/MD.
C IW IS A WORKSPACE ARRAY USED BY OTHER SUBROUTINES AND PASSED TO THIS
C SUBROUTINE ONLY SO THAT A TEST FOR EQUIVALENCE WITH IRN CAN BE
C MADE.
C
C COUNTS FOR OPERATIONS AND STORAGE ARE ACCUMULATED IN VARIABLES
C OPS,NRLTOT,NIRTOT,NRLNEC,NIRNEC,NRLADU,NRLNEC,NIRNEC.
C OPS NUMBER OF MULTIPLICATIONS AND ADDITIONS DURING FACTORIZATION.
C NRLADU,NIRADU REAL AND INTEGER STORAGE RESPECTIVELY FOR THE
C MATRIX FACTORS.
C NRLTOT,NIRTOT REAL AND INTEGER STRORAGE RESPECTIVELY REQUIRED
C FOR THE FACTORIZATION IF NO COMPRESSES ARE ALLOWED.
C NRLNEC,NIRNEC REAL AND INTEGER STORAGE RESPECTIVELY REQUIRED FOR
C THE FACTORIZATION IF COMPRESSES ARE ALLOWED.
C INFO is an INTEGER array of length 20, see MA27A/AD.
C OPS ACCUMULATES THE NO. OF MULTIPLY/ADD PAIRS NEEDED TO CREATE THE
C TRIANGULAR FACTORIZATION, IN THE DEFINITE CASE.
C
C .. Scalar Arguments ..
DOUBLE PRECISION OPS
INTEGER N,NSTEPS,NZ
C ..
C .. Array Arguments ..
INTEGER ICN(*),IRN(*),IW(*),LSTKI(N),LSTKR(N),NA(NSTEPS),
+ ND(NSTEPS),NE(NSTEPS),PERM(N),INFO(20)
C ..
C .. Local Scalars ..
INTEGER I,INEW,IOLD,IORG,IROW,ISTKI,ISTKR,ITOP,ITREE,JOLD,JORG,K,
+ LSTK,NASSR,NELIM,NFR,NSTK,NUMORG,NZ1,NZ2
DOUBLE PRECISION DELIM
INTEGER NRLADU,NIRADU,NIRTOT,NRLTOT,NIRNEC,NRLNEC
C ..
C .. Intrinsic Functions ..
INTRINSIC MAX,MIN
C ..
C .. Executable Statements ..
C
IF (NZ.EQ.0) GO TO 20
C JUMP IF IW AND IRN HAVE NOT BEEN EQUIVALENCED.
IF (IRN(1).NE.IW(1)) GO TO 20
C RESET IRN(1).
IRN(1) = IW(1) - 1
C THE TOTAL NUMBER OF OFF-DIAGONAL ENTRIES IS ACCUMULATED IN NZ2.
C LSTKI IS SET TO HOLD THE TOTAL NUMBER OF ENTRIES (INCUDING
C THE DIAGONAL) IN EACH ROW IN PERMUTED ORDER.
NZ2 = 0
DO 10 IOLD = 1,N
INEW = PERM(IOLD)
LSTKI(INEW) = LSTKR(IOLD) + 1
NZ2 = NZ2 + LSTKR(IOLD)
10 CONTINUE
C NZ1 IS THE NUMBER OF ENTRIES IN ONE TRIANGLE INCLUDING THE DIAGONAL.
C NZ2 IS THE TOTAL NUMBER OF ENTRIES INCLUDING THE DIAGONAL.
NZ1 = NZ2/2 + N
NZ2 = NZ2 + N
GO TO 60
C COUNT (IN LSTKI) NON-ZEROS IN ORIGINAL MATRIX BY PERMUTED ROW (UPPER
C TRIANGLE ONLY). INITIALIZE COUNTS.