Skip to content
Snippets Groups Projects
ma27ad.f 117 KiB
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
      NVROOT = 0
C
C Link together variables having same degree
      DO 30 IS = 1,N
        K = IPE(IS)
        IF (K.GT.0) THEN
          ID = IW(K) + 1
          NS = IPD(ID)
          IF (NS.GT.0) LST(NS) = IS
          NXT(IS) = NS
          IPD(ID) = IS
          LST(IS) = -ID
        ELSE
C We have a variable that can be eliminated at once because there is
C     no off-diagonal nonzero in its row.
          NEL = NEL + 1
          FLAG(IS) = -1
          NXT(IS) = 0
          LST(IS) = 0
        ENDIF
   30 CONTINUE

C
C Start of main loop
C
      DO 340 ML = 1,N
C Leave loop if all variables have been eliminated.
        IF (NEL+NVROOT+1.GE.N) GO TO 350
C
C Find next supervariable for elimination.
        DO 40 ID = MD,N
          MS = IPD(ID)
          IF (MS.GT.0) GO TO 50
   40   CONTINUE
   50   MD = ID
C Nvpiv holds the number of variables in the pivot.
        NVPIV = NV(MS)
C
C Remove chosen variable from linked list
        NS = NXT(MS)
        NXT(MS) = 0
        LST(MS) = 0
        IF (NS.GT.0) LST(NS) = -ID
        IPD(ID) = NS
        ME = MS
        NEL = NEL + NVPIV
C IDN holds the degree of the new element.
        IDN = 0
C
C Run through the list of the pivotal supervariable, setting tree
C     pointers and constructing new list of supervariables.
C KP is a pointer to the current position in the old list.
        KP = IPE(ME)
        FLAG(MS) = -1
C IP points to the start of the new list.
        IP = IWFR
C LEN holds the length of the list associated with the pivot.
        LEN = IW(KP)
        DO 140 KP1 = 1,LEN
          KP = KP + 1
          KE = IW(KP)
C Jump if KE is an element that has not been merged into another.
          IF (FLAG(KE).LE.-2) GO TO 60
C Jump if KE is an element that has been merged into another or is
C     a supervariable that has been eliminated.
          IF (FLAG(KE).LE.0) THEN
             IF (IPE(KE).NE.-ROOT) GO TO 140
C KE has been merged into the root
             KE = ROOT
             IF (FLAG(KE).LE.0) GO TO 140
          END IF
C We have a supervariable. Prepare to search rest of list.
          JP = KP - 1
          LN = LEN - KP1 + 1
          IE = MS
          GO TO 70
C Search variable list of element KE, using JP as a pointer to it.
   60     IE = KE
          JP = IPE(IE)
          LN = IW(JP)
C
C Search for different supervariables and add them to the new list,
C     compressing when necessary. This loop is executed once for
C     each element in the list and once for all the supervariables
C     in the list.
   70     DO 130 JP1 = 1,LN
            JP = JP + 1
            IS = IW(JP)
C Jump if IS is not a principal variable or has already been counted.
            IF (FLAG(IS).LE.0) THEN
               IF (IPE(IS).EQ.-ROOT) THEN
C IS has been merged into the root
                  IS = ROOT
                  IW(JP) = ROOT
                  IF (FLAG(IS).LE.0) GO TO 130
               ELSE
                  GO TO 130
               END IF
            END IF
            FLAG(IS) = 0

C To fix Nick bug need to add one here to store (eventually) length
C     of new row
            IF (IWFR .GE. LW-1) THEN
C Logic was previously as below
CCC         IF (IWFR.LT.LW) GO TO 100
C Prepare for compressing IW by adjusting pointers and
C     lengths so that the lists being searched in the inner and outer
C     loops contain only the remaining entries.
              IPE(MS) = KP
              IW(KP) = LEN - KP1
              IPE(IE) = JP
              IW(JP) = LN - JP1
C Compress IW
              CALL MA27UD(N,IPE,IW,IP-1,LWFR,NCMPA)
C Copy new list forward
              JP2 = IWFR - 1
              IWFR = LWFR
              IF (IP.GT.JP2) GO TO 90
              DO 80 JP = IP,JP2
                IW(IWFR) = IW(JP)
                IWFR = IWFR + 1
   80         CONTINUE
C Adjust pointers for the new list and the lists being searched.
   90         IP = LWFR
              JP = IPE(IE)
              KP = IPE(ME)
            ENDIF

C Store IS in new list.
            IW(IWFR) = IS
            IDN = IDN + NV(IS)
            IWFR = IWFR + 1
C Remove IS from degree linked list
            LS = LST(IS)
            LST(IS) = 0
            NS = NXT(IS)
            NXT(IS) = 0
            IF (NS.GT.0) LST(NS) = LS
            IF (LS.LT.0) THEN
              LS = -LS
              IPD(LS) = NS
            ELSE IF (LS.GT.0) THEN
              NXT(LS) = NS
            END IF
  130     CONTINUE
C Jump if we have just been searching the variables at the end of
C     the list of the pivot.
          IF (IE.EQ.MS) GO TO 150
C Set tree pointer and flag to indicate element IE is absorbed into
C     new element ME.
          IPE(IE) = -ME
          FLAG(IE) = -1
  140   CONTINUE

C Store the degree of the pivot.
  150   NV(MS) = IDN + NVPIV

C Jump if new element is null.
        IF (IWFR.EQ.IP) THEN
          IPE(ME) = 0
          GO TO 340
        ENDIF

        K1 = IP
        K2 = IWFR - 1
C
C Run through new list of supervariables revising each associated list,
C     recalculating degrees and removing duplicates.
        LIMIT = NINT(FRATIO*(N-NEL))
        DO 310 K = K1,K2
          IS = IW(K)
          IF (IS.EQ.ROOT) GO TO 310
          IF (NFLG.GT.2) GO TO 170
C Reset FLAG values to +/-IOVFLO.
          DO 160 I = 1,N
            IF (FLAG(I).GT.0) FLAG(I) = IOVFLO
            IF (FLAG(I).LE.-2) FLAG(I) = -IOVFLO
  160     CONTINUE
          NFLG = IOVFLO
C Reduce NFLG by one to cater for this supervariable.
  170     NFLG = NFLG - 1
C Begin with the degree of the new element. Its variables must always
C     be counted during the degree calculation and they are already
C     flagged with the value 0.
          ID = IDN
C Run through the list associated with supervariable IS
          KP1 = IPE(IS) + 1
C NP points to the next entry in the revised list.
          NP = KP1
          KP2 = IW(KP1-1) + KP1 - 1
          DO 220 KP = KP1,KP2
            KE = IW(KP)
C Test whether KE is an element, a redundant entry or a supervariable.
            IF (FLAG(KE).EQ.-1) THEN
              IF (IPE(KE).NE.-ROOT) GO TO 220
C KE has been merged into the root
              KE = ROOT
              IW(KP) = ROOT
              IF (FLAG(KE).EQ.-1) GO TO 220
            END IF
            IF (FLAG(KE).GE.0) GO TO 230
C Search list of element KE, revising the degree when new variables
C     found.
            JP1 = IPE(KE) + 1
            JP2 = IW(JP1-1) + JP1 - 1
            IDL = ID
            DO 190 JP = JP1,JP2
              JS = IW(JP)
C Jump if JS has already been counted.
              IF (FLAG(JS).LE.NFLG) GO TO 190
              ID = ID + NV(JS)
              FLAG(JS) = NFLG
  190       CONTINUE
C Jump if one or more new supervariables were found.
            IF (ID.GT.IDL) GO TO 210
C Check whether every variable of element KE is in new element ME.
            DO 200 JP = JP1,JP2
              JS = IW(JP)
              IF (FLAG(JS).NE.0) GO TO 210
  200       CONTINUE
C Set tree pointer and FLAG to indicate that element KE is absorbed
C     into new element ME.
            IPE(KE) = -ME
            FLAG(KE) = -1
            GO TO 220
C Store element KE in the revised list for supervariable IS and flag it.
  210       IW(NP) = KE
            FLAG(KE) = -NFLG
            NP = NP + 1
  220     CONTINUE
          NP0 = NP
          GO TO 250
C Treat the rest of the list associated with supervariable IS. It
C     consists entirely of supervariables.
  230     KP0 = KP
          NP0 = NP
          DO 240 KP = KP0,KP2
            KS = IW(KP)
            IF (FLAG(KS).LE.NFLG) THEN
               IF (IPE(KS).EQ.-ROOT) THEN
                  KS = ROOT
                  IW(KP) = ROOT
                  IF (FLAG(KS).LE.NFLG) GO TO 240
               ELSE
                  GO TO 240
               END IF
            END IF
C Add to degree, flag supervariable KS and add it to new list.
            ID = ID + NV(KS)
            FLAG(KS) = NFLG
            IW(NP) = KS
            NP = NP + 1
  240     CONTINUE
C Move first supervariable to end of list, move first element to end
C     of element part of list and add new element to front of list.
  250     IF (ID.GE.LIMIT) GO TO 295
          IW(NP) = IW(NP0)
          IW(NP0) = IW(KP1)
          IW(KP1) = ME
C Store the new length of the list.
          IW(KP1-1) = NP - KP1 + 1
C
C Check whether row is is identical to another by looking in linked
C     list of supervariables with degree ID at those whose lists have
C     first entry ME. Note that those containing ME come first so the
C     search can be terminated when a list not starting with ME is
C     found.
          JS = IPD(ID)
          DO 280 L = 1,N
            IF (JS.LE.0) GO TO 300
            KP1 = IPE(JS) + 1
            IF (IW(KP1).NE.ME) GO TO 300
C JS has same degree and is active. Check if identical to IS.
            KP2 = KP1 - 1 + IW(KP1-1)
            DO 260 KP = KP1,KP2
              IE = IW(KP)
C Jump if IE is a supervariable or an element not in the list of IS.
              IF (ABS(FLAG(IE)+0).GT.NFLG) GO TO 270
  260       CONTINUE
            GO TO 290

  270       JS = NXT(JS)
  280     CONTINUE
C Supervariable amalgamation. Row IS is identical to row JS.
C Regard all variables in the two supervariables as being in IS. Set
C     tree pointer, FLAG and NV entries.
  290     IPE(JS) = -IS
          NV(IS) = NV(IS) + NV(JS)
          NV(JS) = 0
          FLAG(JS) = -1
C Replace JS by IS in linked list.
          NS = NXT(JS)
          LS = LST(JS)
          IF (NS.GT.0) LST(NS) = IS
          IF (LS.GT.0) NXT(LS) = IS
          LST(IS) = LS
          NXT(IS) = NS
          LST(JS) = 0
          NXT(JS) = 0
          IF (IPD(ID).EQ.JS) IPD(ID) = IS
          GO TO 310
C Treat IS as full. Merge it into the root node.
  295     IF (NVROOT.EQ.0) THEN
            ROOT = IS
            IPE(IS) = 0
          ELSE
            IW(K) = ROOT
            IPE(IS) = -ROOT
            NV(ROOT) = NV(ROOT) + NV(IS)
            NV(IS) = 0
            FLAG(IS) = -1
          END IF
          NVROOT = NV(ROOT)
          GO TO 310
C Insert IS into linked list of supervariables of same degree.
  300     NS = IPD(ID)
          IF (NS.GT.0) LST(NS) = IS
          NXT(IS) = NS
          IPD(ID) = IS
          LST(IS) = -ID
          MD = MIN(MD,ID)
  310   CONTINUE

C
C Reset flags for supervariables in newly created element and
C     remove those absorbed into others.
        DO 320 K = K1,K2
          IS = IW(K)
          IF (NV(IS).EQ.0) GO TO 320
          FLAG(IS) = NFLG
          IW(IP) = IS
          IP = IP + 1
  320   CONTINUE

        FLAG(ME) = -NFLG
C Move first entry to end to make room for length.
        IW(IP) = IW(K1)
        IW(K1) = IP - K1
C Set pointer for new element and reset IWFR.
        IPE(ME) = K1
        IWFR = IP + 1

C  End of main loop
  340 CONTINUE
C

C Absorb any remaining variables into the root
  350 DO 360 IS = 1,N
        IF(NXT(IS).NE.0 .OR. LST(IS).NE.0) THEN
          IF (NVROOT.EQ.0) THEN
            ROOT = IS
            IPE(IS) = 0
          ELSE
            IPE(IS) = -ROOT
          END IF
          NVROOT = NVROOT + NV(IS)
          NV(IS) = 0
         END IF
  360 CONTINUE
C Link any remaining elements to the root
      DO 370 IE = 1,N
        IF (IPE(IE).GT.0) IPE(IE) = -ROOT
  370 CONTINUE
      IF(NVROOT.GT.0)NV(ROOT)=NVROOT
      END
      SUBROUTINE MA27UD(N,IPE,IW,LW,IWFR,NCMPA)
C COMPRESS LISTS HELD BY MA27H/HD AND MA27K/KD IN IW AND ADJUST POINTERS
C     IN IPE TO CORRESPOND.
C N IS THE MATRIX ORDER. IT IS NOT ALTERED.
C IPE(I) POINTS TO THE POSITION IN IW OF THE START OF LIST I OR IS
C     ZERO IF THERE IS NO LIST I. ON EXIT IT POINTS TO THE NEW POSITION.
C IW HOLDS THE LISTS, EACH HEADED BY ITS LENGTH. ON OUTPUT THE SAME
C     LISTS ARE HELD, BUT THEY ARE NOW COMPRESSED TOGETHER.
C LW HOLDS THE LENGTH OF IW. IT IS NOT ALTERED.
C IWFR NEED NOT BE SET ON ENTRY. ON EXIT IT POINTS TO THE FIRST FREE
C     LOCATION IN IW.
C     ON RETURN IT IS SET TO THE FIRST FREE LOCATION IN IW.
C NCMPA see INFO(11) in MA27A/AD.
C
C     .. Scalar Arguments ..
      INTEGER IWFR,LW,N,NCMPA
C     ..
C     .. Array Arguments ..
      INTEGER IPE(N),IW(LW)
C     ..
C     .. Local Scalars ..
      INTEGER I,IR,K,K1,K2,LWFR
C     ..
C     .. Executable Statements ..
      NCMPA = NCMPA + 1
C PREPARE FOR COMPRESSING BY STORING THE LENGTHS OF THE
C     LISTS IN IPE AND SETTING THE FIRST ENTRY OF EACH LIST TO
C     -(LIST NUMBER).
      DO 10 I = 1,N
        K1 = IPE(I)
        IF (K1.LE.0) GO TO 10
        IPE(I) = IW(K1)
        IW(K1) = -I
   10 CONTINUE
C
C COMPRESS
C IWFR POINTS JUST BEYOND THE END OF THE COMPRESSED FILE.
C LWFR POINTS JUST BEYOND THE END OF THE UNCOMPRESSED FILE.
      IWFR = 1
      LWFR = IWFR
      DO 60 IR = 1,N
        IF (LWFR.GT.LW) GO TO 70
C SEARCH FOR THE NEXT NEGATIVE ENTRY.
        DO 20 K = LWFR,LW
          IF (IW(K).LT.0) GO TO 30
   20   CONTINUE
        GO TO 70
C PICK UP ENTRY NUMBER, STORE LENGTH IN NEW POSITION, SET NEW POINTER
C     AND PREPARE TO COPY LIST.
   30   I = -IW(K)
        IW(IWFR) = IPE(I)
        IPE(I) = IWFR
        K1 = K + 1
        K2 = K + IW(IWFR)
        IWFR = IWFR + 1
        IF (K1.GT.K2) GO TO 50
C COPY LIST TO NEW POSITION.
        DO 40 K = K1,K2
          IW(IWFR) = IW(K)
          IWFR = IWFR + 1
   40   CONTINUE
   50   LWFR = K2 + 1
   60 CONTINUE
   70 RETURN

      END
      SUBROUTINE MA27JD(N,NZ,IRN,ICN,PERM,IW,LW,IPE,IQ,FLAG,IWFR,
     +                 ICNTL,INFO)
C
C SORT PRIOR TO CALLING ANALYSIS ROUTINE MA27K/KD.
C
C GIVEN THE POSITIONS OF THE OFF-DIAGONAL NON-ZEROS OF A SYMMETRIC
C     MATRIX AND A PERMUTATION, CONSTRUCT THE SPARSITY PATTERN
C     OF THE STRICTLY UPPER TRIANGULAR PART OF THE PERMUTED MATRIX.
C     EITHER ONE OF A PAIR (I,J),(J,I) MAY BE USED TO REPRESENT
C     THE PAIR. DIAGONAL ELEMENTS ARE IGNORED. NO CHECK IS MADE
C     FOR DUPLICATE ELEMENTS UNLESS ANY ROW HAS MORE THAN ICNTL(4)
C     NON-ZEROS, IN WHICH CASE DUPLICATES ARE REMOVED.
C
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C NZ MUST BE SET TO THE NUMBER OF NON-ZEROS INPUT. IT IS NOT
C     ALTERED.
C IRN(I),I=1,2,...,NZ MUST BE SET TO THE ROW INDICES OF THE
C     NON-ZEROS ON INPUT. IT IS NOT ALTERED UNLESS EQUIVALENCED WITH IW.
C     IRN(1) MAY BE EQUIVALENCED WITH IW(1).
C ICN(I),I=1,2,...,NZ MUST BE SET TO THE COLUMN INDICES OF THE
C     NON-ZEROS ON INPUT. IT IS NOT ALTERED UNLESS EQUIVALENCED
C     WITH IW.ICN(1) MAY BE EQUIVELENCED WITH IW(K),K.GT.NZ.
C PERM(I) MUST BE SET TO HOLD THE POSITION OF VARIABLE I IN THE
C     PERMUTED ORDER. IT IS NOT ALTERED.
C IW NEED NOT BE SET ON INPUT. ON OUTPUT IT CONTAINS LISTS OF
C     COLUMN NUMBERS, EACH LIST BEING HEADED BY ITS LENGTH.
C LW MUST BE SET TO THE LENGTH OF IW. IT MUST BE AT LEAST
C     MAX(NZ,N+(NO. OF OFF-DIAGONAL NON-ZEROS)). IT IS NOT ALTERED.
C IPE NEED NOT BE SET ON INPUT. ON OUTPUT IPE(I) POINTS TO THE START OF
C     THE ENTRY IN IW FOR ROW I, OR IS ZERO IF THERE IS NO ENTRY.
C IQ NEED NOT BE SET. ON OUTPUT IQ(I) CONTAINS THE NUMBER OF
C     OFF-DIAGONAL NON-ZEROS IN ROW I, INCLUDING DUPLICATES.
C FLAG IS USED FOR WORKSPACE TO HOLD FLAGS TO PERMIT DUPLICATE
C     ENTRIES TO BE IDENTIFIED QUICKLY.
C IWFR NEED NOT BE SET ON INPUT. ON OUTPUT IT POINTS TO THE FIRST
C     UNUSED LOCATION IN IW.
C ICNTL is an INTEGER array of length 30, see MA27A/AD.
C INFO is an INTEGER array of length 20, see MA27A/AD.
C
C     .. Scalar Arguments ..
      INTEGER IWFR,LW,N,NZ
C     ..
C     .. Array Arguments ..
      INTEGER FLAG(N),ICN(*),IPE(N),IQ(N),IRN(*),IW(LW),PERM(N)
      INTEGER ICNTL(30),INFO(20)
C     ..
C     .. Local Scalars ..
      INTEGER I,ID,IN,J,JDUMMY,K,K1,K2,L,LBIG,LEN
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC MAX
C     ..
C     .. Executable Statements ..
C
C INITIALIZE INFO(1), INFO(2) AND IQ
      INFO(1) = 0
      INFO(2) = 0
      DO 10 I = 1,N
        IQ(I) = 0
   10 CONTINUE
C
C COUNT THE NUMBERS OF NON-ZEROS IN THE ROWS, PRINT WARNINGS ABOUT
C     OUT-OF-RANGE INDICES AND TRANSFER GENUINE ROW NUMBERS
C     (NEGATED) INTO IW.
      IF (NZ.EQ.0) GO TO 110
      DO 100 K = 1,NZ
        I = IRN(K)
        J = ICN(K)
        IW(K) = -I
        IF(I.LT.J) THEN
          IF (I.GE.1 .AND. J.LE.N) GO TO 80
        ELSE IF(I.GT.J) THEN
          IF (J.GE.1 .AND. I.LE.N) GO TO 80
        ELSE
          IW(K) = 0
          IF (I.GE.1 .AND. I.LE.N) GO TO 100
        END IF
        INFO(2) = INFO(2) + 1
        INFO(1) = 1
        IW(K) = 0
        IF (INFO(2).LE.1 .AND. ICNTL(2).GT.0) THEN
          WRITE (ICNTL(2),FMT=60) INFO(1)
        END IF

   60   FORMAT (' *** WARNING MESSAGE FROM SUBROUTINE MA27AD',
     +          '  *** INFO(1) =',I2)

        IF (INFO(2).LE.10 .AND. ICNTL(2).GT.0) THEN
          WRITE (ICNTL(2),FMT=70) K,I,J
        END IF

   70   FORMAT (I6,'TH NON-ZERO (IN ROW',I6,' AND COLUMN',I6,
     +         ') IGNORED')

        GO TO 100

   80   IF (PERM(J).GT.PERM(I)) GO TO 90
        IQ(J) = IQ(J) + 1
        GO TO 100

   90   IQ(I) = IQ(I) + 1
  100 CONTINUE
C
C ACCUMULATE ROW COUNTS TO GET POINTERS TO ROW ENDS
C     IN IPE.
  110 IWFR = 1
      LBIG = 0
      DO 120 I = 1,N
        L = IQ(I)
        LBIG = MAX(L,LBIG)
        IWFR = IWFR + L
        IPE(I) = IWFR - 1
  120 CONTINUE
C
C PERFORM IN-PLACE SORT
      IF (NZ.EQ.0) GO TO 250
      DO 160 K = 1,NZ
        I = -IW(K)
        IF (I.LE.0) GO TO 160
        L = K
        IW(K) = 0
        DO 150 ID = 1,NZ
          J = ICN(L)
          IF (PERM(I).LT.PERM(J)) GO TO 130
          L = IPE(J)
          IPE(J) = L - 1
          IN = IW(L)
          IW(L) = I
          GO TO 140

  130     L = IPE(I)
          IPE(I) = L - 1
          IN = IW(L)
          IW(L) = J
  140     I = -IN
          IF (I.LE.0) GO TO 160
  150   CONTINUE
  160 CONTINUE
C
C MAKE ROOM IN IW FOR ROW LENGTHS AND INITIALIZE FLAG.
      K = IWFR - 1
      L = K + N
      IWFR = L + 1
      DO 190 I = 1,N
        FLAG(I) = 0
        J = N + 1 - I
        LEN = IQ(J)
        IF (LEN.LE.0) GO TO 180
        DO 170 JDUMMY = 1,LEN
          IW(L) = IW(K)
          K = K - 1
          L = L - 1
  170   CONTINUE
  180   IPE(J) = L
        L = L - 1
  190 CONTINUE
      IF (LBIG.GE.ICNTL(4)) GO TO 210
C
C PLACE ROW LENGTHS IN IW
      DO 200 I = 1,N
        K = IPE(I)
        IW(K) = IQ(I)
        IF (IQ(I).EQ.0) IPE(I) = 0
  200 CONTINUE
      GO TO 250
C
C
C REMOVE DUPLICATE ENTRIES
  210 IWFR = 1
      DO 240 I = 1,N
        K1 = IPE(I) + 1
        K2 = IPE(I) + IQ(I)
        IF (K1.LE.K2) GO TO 220
        IPE(I) = 0
        GO TO 240

  220   IPE(I) = IWFR
        IWFR = IWFR + 1
        DO 230 K = K1,K2
          J = IW(K)
          IF (FLAG(J).EQ.I) GO TO 230
          IW(IWFR) = J
          IWFR = IWFR + 1
          FLAG(J) = I
  230   CONTINUE
        K = IPE(I)
        IW(K) = IWFR - K - 1
  240 CONTINUE
  250 RETURN

      END
      SUBROUTINE MA27KD(N,IPE,IW,LW,IWFR,IPS,IPV,NV,FLAG,NCMPA)
C
C USING A GIVEN PIVOTAL SEQUENCE AND A REPRESENTATION OF THE MATRIX THAT
C     INCLUDES ONLY NON-ZEROS OF THE STRICTLY UPPER-TRIANGULAR PART
C     OF THE PERMUTED MATRIX, CONSTRUCT TREE POINTERS.
C
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C IPE(I) MUST BE SET TO POINT TO THE POSITION IN IW OF THE
C     START OF ROW I OR HAVE THE VALUE ZERO IF ROW I HAS NO OFF-
C     DIAGONAL NON-ZEROS. DURING EXECUTION IT IS USED AS FOLLOWS.
C     IF VARIABLE I IS ELIMINATED THEN IPE(I) POINTS TO THE LIST
C     OF VARIABLES FOR CREATED ELEMENT I. IF ELEMENT I IS
C     ABSORBED INTO NEWLY CREATED ELEMENT J THEN IPE(I)=-J.
C IW MUST BE SET ON ENTRY TO HOLD LISTS OF VARIABLES BY
C     ROWS, EACH LIST BEING HEADED BY ITS LENGTH. WHEN A VARIABLE
C     IS ELIMINATED ITS LIST IS REPLACED BY A LIST OF VARIABLES
C     IN THE NEW ELEMENT.
C LW MUST BE SET TO THE LENGTH OF IW. IT IS NOT ALTERED.
C IWFR MUST BE SET TO THE POSITION IN IW OF THE FIRST FREE VARIABLE.
C     IT IS REVISED DURING EXECUTION, CONTINUING TO HAVE THIS MEANING.
C IPS(I) MUST BE SET TO THE POSITION OF VARIABLE I IN THE REQUIRED
C     ORDERING. IT IS NOT ALTERED.
C IPV NEED NOT BE SET. IPV(K) IS SET TO HOLD THE K TH VARIABLE
C     IN PIVOT ORDER.
C NV NEED NOT BE SET. IF VARIABLE J HAS NOT BEEN ELIMINATED THEN
C     THE LAST ELEMENT WHOSE LEADING VARIABLE (VARIABLE EARLIEST
C     IN THE PIVOT SEQUENCE) IS J IS ELEMENT NV(J). IF ELEMENT J
C     EXISTS THEN THE LAST ELEMENT HAVING THE SAME LEADING
C     VARIABLE IS NV(J). IN BOTH CASES NV(J)=0 IF THERE IS NO SUCH
C     ELEMENT. IF ELEMENT J HAS BEEN MERGED INTO A LATER ELEMENT
C     THEN NV(J) IS THE DEGREE AT THE TIME OF ELIMINATION.
C FLAG IS USED AS WORKSPACE FOR VARIABLE FLAGS.
C     FLAG(JS)=ME IF JS HAS BEEN INCLUDED IN THE LIST FOR ME.
C NCMPA see INFO(11) in MA27A/AD.
C
C     .. Scalar Arguments ..
      INTEGER IWFR,LW,N,NCMPA
C     ..
C     .. Array Arguments ..
      INTEGER FLAG(N),IPE(N),IPS(N),IPV(N),IW(LW),NV(N)
C     ..
C     .. Local Scalars ..
      INTEGER I,IE,IP,J,JE,JP,JP1,JP2,JS,KDUMMY,LN,LWFR,ME,MINJS,ML,MS
C     ..
C     .. External Subroutines ..
      EXTERNAL MA27UD
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC MIN
C     ..
C     .. Executable Statements ..
C
C INITIALIZATIONS
      DO 10 I = 1,N
        FLAG(I) = 0
        NV(I) = 0
        J = IPS(I)
        IPV(J) = I
   10 CONTINUE
      NCMPA = 0
C
C START OF MAIN LOOP
C
      DO 100 ML = 1,N
C ME=MS IS THE NAME OF THE VARIABLE ELIMINATED AND
C     OF THE ELEMENT CREATED IN THE MAIN LOOP.
        MS = IPV(ML)
        ME = MS
        FLAG(MS) = ME
C
C MERGE ROW MS WITH ALL THE ELEMENTS HAVING MS AS LEADING VARIABLE.
C IP POINTS TO THE START OF THE NEW LIST.
        IP = IWFR
C MINJS IS SET TO THE POSITION IN THE ORDER OF THE LEADING VARIABLE
C     IN THE NEW LIST.
        MINJS = N
        IE = ME
        DO 70 KDUMMY = 1,N
C SEARCH VARIABLE LIST OF ELEMENT IE.
C JP POINTS TO THE CURRENT POSITION IN THE LIST BEING SEARCHED.
          JP = IPE(IE)
C LN IS THE LENGTH OF THE LIST BEING SEARCHED.
          LN = 0
          IF (JP.LE.0) GO TO 60
          LN = IW(JP)
C
C SEARCH FOR DIFFERENT VARIABLES AND ADD THEM TO LIST,
C     COMPRESSING WHEN NECESSARY
          DO 50 JP1 = 1,LN
            JP = JP + 1
C PLACE NEXT VARIABLE IN JS.
            JS = IW(JP)
C JUMP IF VARIABLE HAS ALREADY BEEN INCLUDED.
            IF (FLAG(JS).EQ.ME) GO TO 50
            FLAG(JS) = ME
            IF (IWFR.LT.LW) GO TO 40
C PREPARE FOR COMPRESSING IW BY ADJUSTING POINTER TO AND LENGTH OF
C     THE LIST FOR IE TO REFER TO THE REMAINING ENTRIES.
            IPE(IE) = JP
            IW(JP) = LN - JP1
C COMPRESS IW.
            CALL MA27UD(N,IPE,IW,IP-1,LWFR,NCMPA)
C COPY NEW LIST FORWARD
            JP2 = IWFR - 1
            IWFR = LWFR
            IF (IP.GT.JP2) GO TO 30
            DO 20 JP = IP,JP2
              IW(IWFR) = IW(JP)
              IWFR = IWFR + 1
   20       CONTINUE
   30       IP = LWFR
            JP = IPE(IE)
C ADD VARIABLE JS TO NEW LIST.
   40       IW(IWFR) = JS
            MINJS = MIN(MINJS,IPS(JS)+0)
            IWFR = IWFR + 1
   50     CONTINUE
C RECORD ABSORPTION OF ELEMENT IE INTO NEW ELEMENT.
   60     IPE(IE) = -ME
C PICK UP NEXT ELEMENT WITH LEADING VARIABLE MS.
          JE = NV(IE)
C STORE DEGREE OF IE.
          NV(IE) = LN + 1
          IE = JE
C LEAVE LOOP IF THERE ARE NO MORE ELEMENTS.
          IF (IE.EQ.0) GO TO 80
   70   CONTINUE
   80   IF (IWFR.GT.IP) GO TO 90
C DEAL WITH NULL NEW ELEMENT.
        IPE(ME) = 0
        NV(ME) = 1
        GO TO 100
C LINK NEW ELEMENT WITH OTHERS HAVING SAME LEADING VARIABLE.
   90   MINJS = IPV(MINJS)
        NV(ME) = NV(MINJS)
        NV(MINJS) = ME
C MOVE FIRST ENTRY IN NEW LIST TO END TO ALLOW ROOM FOR LENGTH AT
C     FRONT. SET POINTER TO FRONT.
        IW(IWFR) = IW(IP)
        IW(IP) = IWFR - IP
        IPE(ME) = IP
        IWFR = IWFR + 1
  100 CONTINUE
      RETURN

      END
      SUBROUTINE MA27LD(N,IPE,NV,IPS,NE,NA,ND,NSTEPS,NEMIN)
C
C TREE SEARCH
C
C GIVEN SON TO FATHER TREE POINTERS, PERFORM DEPTH-FIRST
C     SEARCH TO FIND PIVOT ORDER AND NUMBER OF ELIMINATIONS
C     AND ASSEMBLIES AT EACH STAGE.
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C IPE(I) MUST BE SET EQUAL TO -(FATHER OF NODE I) OR ZERO IF
C      NODE IS A ROOT. IT IS ALTERED TO POINT TO ITS NEXT
C      YOUNGER BROTHER IF IT HAS ONE, BUT OTHERWISE IS NOT
C      CHANGED.
C NV(I) MUST BE SET TO ZERO IF NO VARIABLES ARE ELIMINATED AT NODE
C      I AND TO THE DEGREE OTHERWISE. ONLY LEAF NODES CAN HAVE
C      ZERO VALUES OF NV(I). NV IS NOT ALTERED.
C IPS(I) NEED NOT BE SET. IT IS USED TEMPORARILY TO HOLD
C      -(ELDEST SON OF NODE I) IF IT HAS ONE AND 0 OTHERWISE. IT IS
C      EVENTUALLY SET TO HOLD THE POSITION OF NODE I IN THE ORDER.
C NE(IS) NEED NOT BE SET. IT IS SET TO THE NUMBER OF VARIABLES
C      ELIMINATED AT STAGE IS OF THE ELIMINATION.
C NA(IS) NEED NOT BE SET. IT IS SET TO THE NUMBER OF ELEMENTS
C      ASSEMBLED AT STAGE IS OF THE ELIMINATION.
C ND(IS) NEED NOT BE SET. IT IS SET TO THE DEGREE AT STAGE IS OF
C     THE ELIMINATION.
C NSTEPS NEED NOT BE SET. IT IS SET TO  THE NUMBER OF ELIMINATION
C      STEPS.
C NEMIN see ICNTL(5) in MA27A/AD.
C
C     .. Scalar Arguments ..
      INTEGER N,NSTEPS,NEMIN
C     ..
C     .. Array Arguments ..
      INTEGER IPE(N),IPS(N),NA(N),ND(N),NE(N),NV(N)
C     ..
C     .. Local Scalars ..
      INTEGER I,IB,IF,IL,IS,ISON,K,L,NR
C     ..
C     .. Executable Statements ..
C INITIALIZE IPS AND NE.
      DO 10 I = 1,N
        IPS(I) = 0
        NE(I) = 0
   10 CONTINUE
C
C SET IPS(I) TO -(ELDEST SON OF NODE I) AND IPE(I) TO NEXT YOUNGER
C     BROTHER OF NODE I IF IT HAS ONE.
C FIRST PASS IS FOR NODES WITHOUT ELIMINATIONS.
      DO 20 I = 1,N
        IF (NV(I).GT.0) GO TO 20
        IF = -IPE(I)
        IS = -IPS(IF)
        IF (IS.GT.0) IPE(I) = IS
        IPS(IF) = -I
   20 CONTINUE
C NR IS DECREMENTED FOR EACH ROOT NODE. THESE ARE STORED IN
C     NE(I),I=NR,N.
      NR = N + 1
C SECOND PASS TO ADD NODES WITH ELIMINATIONS.
      DO 50 I = 1,N
        IF (NV(I).LE.0) GO TO 50
C NODE IF IS THE FATHER OF NODE I.
        IF = -IPE(I)
        IF (IF.EQ.0) GO TO 40
        IS = -IPS(IF)
C JUMP IF NODE IF HAS NO SONS YET.
        IF (IS.LE.0) GO TO 30
C SET POINTER TO NEXT BROTHER
        IPE(I) = IS
C NODE I IS ELDEST SON OF NODE IF.
   30   IPS(IF) = -I
        GO TO 50
C WE HAVE A ROOT
   40   NR = NR - 1
        NE(NR) = I
   50 CONTINUE
C
C DEPTH-FIRST SEARCH.
C IL HOLDS THE CURRENT TREE LEVEL. ROOTS ARE AT LEVEL N, THEIR SONS
C     ARE AT LEVEL N-1, ETC.
C IS HOLDS THE CURRENT ELIMINATION STAGE. WE ACCUMULATE THE NUMBER
C     OF ELIMINATIONS AT STAGE IS DIRECTLY IN NE(IS). THE NUMBER OF
C     ASSEMBLIES IS ACCUMULATED TEMPORARILY IN NA(IL), FOR TREE
C     LEVEL IL, AND IS TRANSFERED TO NA(IS) WHEN WE REACH THE
C     APPROPRIATE STAGE IS.
      IS = 1
C I IS THE CURRENT NODE.
      I = 0
      DO 160 K = 1,N
        IF (I.GT.0) GO TO 60
C PICK UP NEXT ROOT.
        I = NE(NR)
        NE(NR) = 0
        NR = NR + 1
        IL = N
        NA(N) = 0
C GO TO SON FOR AS LONG AS POSSIBLE, CLEARING FATHER-SON POINTERS
C     IN IPS AS EACH IS USED AND SETTING NA(IL)=0 FOR ALL LEVELS
C     REACHED.
   60   DO 70 L = 1,N
          IF (IPS(I).GE.0) GO TO 80
          ISON = -IPS(I)
          IPS(I) = 0
          I = ISON
          IL = IL - 1
          NA(IL) = 0
   70   CONTINUE
C RECORD POSITION OF NODE I IN THE ORDER.
   80   IPS(I) = K
        NE(IS) = NE(IS) + 1
C JUMP IF NODE HAS NO ELIMINATIONS.
        IF (NV(I).LE.0) GO TO 120
        IF (IL.LT.N) NA(IL+1) = NA(IL+1) + 1
        NA(IS) = NA(IL)
        ND(IS) = NV(I)
C CHECK FOR STATIC CONDENSATION
        IF (NA(IS).NE.1) GO TO 90
        IF (ND(IS-1)-NE(IS-1).EQ.ND(IS)) GO TO 100
C CHECK FOR SMALL NUMBERS OF ELIMINATIONS IN BOTH LAST TWO STEPS.
   90   IF (NE(IS).GE.NEMIN) GO TO 110
        IF (NA(IS).EQ.0) GO TO 110
        IF (NE(IS-1).GE.NEMIN) GO TO 110
C COMBINE THE LAST TWO STEPS
  100   NA(IS-1) = NA(IS-1) + NA(IS) - 1
        ND(IS-1) = ND(IS) + NE(IS-1)
        NE(IS-1) = NE(IS) + NE(IS-1)
        NE(IS) = 0
        GO TO 120

  110   IS = IS + 1
  120   IB = IPE(I)
        IF (IB.GE.0) THEN
C NODE I HAS A BROTHER OR IS A ROOT
          IF (IB.GT.0) NA(IL) = 0
          I = IB
        ELSE
C GO TO FATHER OF NODE I
          I = -IB
          IL = IL + 1
        END IF
  160 CONTINUE
      NSTEPS = IS - 1
      RETURN

      END
      SUBROUTINE MA27MD(N,NZ,IRN,ICN,PERM,NA,NE,ND,NSTEPS,LSTKI,LSTKR,
     +                 IW,INFO,OPS)
C
C STORAGE AND OPERATION COUNT EVALUATION.
C
C EVALUATE NUMBER OF OPERATIONS AND SPACE REQUIRED BY FACTORIZATION
C     USING MA27B/BD.  THE VALUES GIVEN ARE EXACT ONLY IF NO NUMERICAL
C     PIVOTING IS PERFORMED AND THEN ONLY IF IRN(1) WAS NOT
C     EQUIVALENCED TO IW(1) BY THE USER BEFORE CALLING MA27A/AD.  IF
C     THE EQUIVALENCE HAS BEEN MADE ONLY AN UPPER BOUND FOR NIRNEC
C     AND NRLNEC CAN BE CALCULATED ALTHOUGH THE OTHER COUNTS WILL
C     STILL BE EXACT.
C
C N MUST BE SET TO THE MATRIX ORDER. IT IS NOT ALTERED.
C NZ MUST BE SET TO THE NUMBER OF NON-ZEROS INPUT.  IT IS NOT ALTERED.
C IRN,ICN.  UNLESS IRN(1) HAS BEEN EQUIVALENCED TO IW(1)
C     IRN,ICN MUST BE SET TO THE ROW AND COLUMN INDICES OF THE
C     NON-ZEROS ON INPUT.  THEY ARE NOT ALTERED BY MA27M/MD.
C PERM MUST BE SET TO THE POSITION IN THE PIVOT ORDER OF EACH ROW.
C     IT IS NOT ALTERED.
C NA,NE,ND MUST BE SET TO HOLD, FOR EACH TREE NODE, THE NUMBER OF STACK
C     ELEMENTS ASSEMBLED, THE NUMBER OF ELIMINATIONS AND THE SIZE OF
C     THE ASSEMBLED FRONT MATRIX RESPECTIVELY.  THEY ARE NOT ALTERED.
C NSTEPS MUST BE SET TO HOLD THE NUMBER OF TREE NODES. IT IS NOT
C     ALTERED.
C LSTKI IS USED AS A WORK ARRAY BY MA27M/MD.
C LSTKR.  IF IRN(1) IS EQUIVALENCED TO IW(1)  THEN LSTKR(I)
C     MUST HOLD THE TOTAL NUMBER OF OFF-DIAGONAL ENTRIES (INCLUDING
C     DUPLICATES) IN ROW I (I=1,..,N) OF THE ORIGINAL MATRIX.  IT
C     IS USED AS WORKSPACE BY MA27M/MD.
C IW IS A WORKSPACE ARRAY USED BY OTHER SUBROUTINES AND PASSED TO THIS
C     SUBROUTINE ONLY SO THAT A TEST FOR EQUIVALENCE WITH IRN CAN BE
C     MADE.
C
C COUNTS FOR OPERATIONS AND STORAGE ARE ACCUMULATED IN VARIABLES
C     OPS,NRLTOT,NIRTOT,NRLNEC,NIRNEC,NRLADU,NRLNEC,NIRNEC.
C OPS NUMBER OF MULTIPLICATIONS AND ADDITIONS DURING FACTORIZATION.
C NRLADU,NIRADU REAL AND INTEGER STORAGE RESPECTIVELY FOR THE
C     MATRIX FACTORS.
C NRLTOT,NIRTOT REAL AND INTEGER STRORAGE RESPECTIVELY REQUIRED
C     FOR THE FACTORIZATION IF NO COMPRESSES ARE ALLOWED.
C NRLNEC,NIRNEC REAL AND INTEGER STORAGE RESPECTIVELY REQUIRED FOR
C     THE FACTORIZATION IF COMPRESSES ARE ALLOWED.
C INFO is an INTEGER array of length 20, see MA27A/AD.
C OPS ACCUMULATES THE NO. OF MULTIPLY/ADD PAIRS NEEDED TO CREATE THE
C     TRIANGULAR FACTORIZATION, IN THE DEFINITE CASE.
C
C     .. Scalar Arguments ..
      DOUBLE PRECISION OPS
      INTEGER N,NSTEPS,NZ
C     ..
C     .. Array Arguments ..
      INTEGER ICN(*),IRN(*),IW(*),LSTKI(N),LSTKR(N),NA(NSTEPS),
     +        ND(NSTEPS),NE(NSTEPS),PERM(N),INFO(20)
C     ..
C     .. Local Scalars ..
      INTEGER I,INEW,IOLD,IORG,IROW,ISTKI,ISTKR,ITOP,ITREE,JOLD,JORG,K,
     +        LSTK,NASSR,NELIM,NFR,NSTK,NUMORG,NZ1,NZ2
      DOUBLE PRECISION DELIM
      INTEGER NRLADU,NIRADU,NIRTOT,NRLTOT,NIRNEC,NRLNEC
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC MAX,MIN
C     ..
C     .. Executable Statements ..
C
      IF (NZ.EQ.0) GO TO 20
C JUMP IF IW AND IRN HAVE NOT BEEN EQUIVALENCED.
      IF (IRN(1).NE.IW(1)) GO TO 20
C RESET IRN(1).
      IRN(1) = IW(1) - 1
C THE TOTAL NUMBER OF OFF-DIAGONAL ENTRIES IS ACCUMULATED IN NZ2.
C LSTKI IS SET TO HOLD THE TOTAL NUMBER OF ENTRIES (INCUDING
C     THE DIAGONAL) IN EACH ROW IN PERMUTED ORDER.
      NZ2 = 0
      DO 10 IOLD = 1,N
        INEW = PERM(IOLD)
        LSTKI(INEW) = LSTKR(IOLD) + 1
        NZ2 = NZ2 + LSTKR(IOLD)
   10 CONTINUE
C NZ1 IS THE NUMBER OF ENTRIES IN ONE TRIANGLE INCLUDING THE DIAGONAL.
C NZ2 IS THE TOTAL NUMBER OF ENTRIES INCLUDING THE DIAGONAL.
      NZ1 = NZ2/2 + N
      NZ2 = NZ2 + N
      GO TO 60
C COUNT (IN LSTKI) NON-ZEROS IN ORIGINAL MATRIX BY PERMUTED ROW (UPPER
C     TRIANGLE ONLY). INITIALIZE COUNTS.