Skip to content
Snippets Groups Projects
ma27ad.f 117 KiB
Newer Older
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
   20 DO 30 I = 1,N
        LSTKI(I) = 1
   30 CONTINUE
C ACCUMULATE NUMBER OF NON-ZEROS WITH INDICES IN RANGE IN NZ1
C     DUPLICATES ON THE DIAGONAL ARE IGNORED BUT NZ1 INCLUDES ANY
C     DIAGONALS NOT PRESENT ON INPUT.
C ACCUMULATE ROW COUNTS IN LSTKI.
      NZ1 = N
      IF (NZ.EQ.0) GO TO 50
      DO 40 I = 1,NZ
        IOLD = IRN(I)
        JOLD = ICN(I)
C JUMP IF INDEX IS OUT OF RANGE.
        IF (IOLD.LT.1 .OR. IOLD.GT.N) GO TO 40
        IF (JOLD.LT.1 .OR. JOLD.GT.N) GO TO 40
        IF (IOLD.EQ.JOLD) GO TO 40
        NZ1 = NZ1 + 1
        IROW = MIN(PERM(IOLD)+0,PERM(JOLD)+0)
        LSTKI(IROW) = LSTKI(IROW) + 1
   40 CONTINUE
   50 NZ2 = NZ1
C ISTKR,ISTKI CURRENT NUMBER OF STACK ENTRIES IN
C     REAL AND INTEGER STORAGE RESPECTIVELY.
C OPS,NRLADU,NIRADU,NIRTOT,NRLTOT,NIRNEC,NRLNEC,NZ2 ARE DEFINED ABOVE.
C NZ2 CURRENT NUMBER OF ORIGINAL MATRIX ENTRIES NOT YET PROCESSED.
C NUMORG CURRENT TOTAL NUMBER OF ROWS ELIMINATED.
C ITOP CURRENT NUMBER OF ELEMENTS ON THE STACK.
   60 ISTKI = 0
      ISTKR = 0
      OPS = 0.0D0
      NRLADU = 0
C     ONE LOCATION IS NEEDED TO RECORD THE NUMBER OF BLOCKS
C     ACTUALLY USED.
      NIRADU = 1
      NIRTOT = NZ1
      NRLTOT = NZ1
      NIRNEC = NZ2
      NRLNEC = NZ2
      NUMORG = 0
      ITOP = 0
C
C EACH PASS THROUGH THIS LOOP PROCESSES A NODE OF THE TREE.
      DO 100 ITREE = 1,NSTEPS
        NELIM = NE(ITREE)
        DELIM = NELIM
        NFR = ND(ITREE)
        NSTK = NA(ITREE)
C ADJUST STORAGE COUNTS ON ASSEMBLY OF CURRENT FRONTAL MATRIX.
        NASSR = NFR* (NFR+1)/2
        IF (NSTK.NE.0) NASSR = NASSR - LSTKR(ITOP) + 1
        NRLTOT = MAX(NRLTOT,NRLADU+NASSR+ISTKR+NZ1)
        NIRTOT = MAX(NIRTOT,NIRADU+NFR+2+ISTKI+NZ1)
        NRLNEC = MAX(NRLNEC,NRLADU+NASSR+ISTKR+NZ2)
        NIRNEC = MAX(NIRNEC,NIRADU+NFR+2+ISTKI+NZ2)
C DECREASE NZ2 BY THE NUMBER OF ENTRIES IN ROWS BEING ELIMINATED AT
C     THIS STAGE.
        DO 70 IORG = 1,NELIM
          JORG = NUMORG + IORG
          NZ2 = NZ2 - LSTKI(JORG)
   70   CONTINUE
        NUMORG = NUMORG + NELIM
C JUMP IF THERE ARE NO STACK ASSEMBLIES AT THIS NODE.
        IF (NSTK.LE.0) GO TO 90
C REMOVE ELEMENTS FROM THE STACK.  THERE ARE ITOP ELEMENTS ON THE
C     STACK WITH THE APPROPRIATE ENTRIES IN LSTKR,LSTKI GIVING
C     THE REAL AND INTEGER STORAGE RESPECTIVELY FOR EACH STACK
C     ELEMENT.
        DO 80 K = 1,NSTK
          LSTK = LSTKR(ITOP)
          ISTKR = ISTKR - LSTK
          LSTK = LSTKI(ITOP)
          ISTKI = ISTKI - LSTK
          ITOP = ITOP - 1
   80   CONTINUE
C ACCUMULATE NON-ZEROS IN FACTORS AND NUMBER OF OPERATIONS.
   90   NRLADU = NRLADU + (NELIM* (2*NFR-NELIM+1))/2
        NIRADU = NIRADU + 2 + NFR
        IF (NELIM.EQ.1) NIRADU = NIRADU - 1
        OPS = OPS + ((NFR*DELIM*(NFR+1)-(2*NFR+1)*DELIM*(DELIM+1)/2+
     +        DELIM* (DELIM+1)* (2*DELIM+1)/6)/2)
        IF (ITREE.EQ.NSTEPS) GO TO 100
C JUMP IF ALL OF FRONTAL MATRIX HAS BEEN ELIMINATED.
        IF (NFR.EQ.NELIM) GO TO 100
C STACK REMAINDER OF ELEMENT.
        ITOP = ITOP + 1
        LSTKR(ITOP) = (NFR-NELIM)* (NFR-NELIM+1)/2
        LSTKI(ITOP) = NFR - NELIM + 1
        ISTKI = ISTKI + LSTKI(ITOP)
        ISTKR = ISTKR + LSTKR(ITOP)
C WE DO NOT NEED TO ADJUST THE COUNTS FOR THE REAL STORAGE BECAUSE
C     THE REMAINDER OF THE FRONTAL MATRIX IS SIMPLY MOVED IN THE
C     STORAGE FROM FACTORS TO STACK AND NO EXTRA STORAGE IS REQUIRED.
        NIRTOT = MAX(NIRTOT,NIRADU+ISTKI+NZ1)
        NIRNEC = MAX(NIRNEC,NIRADU+ISTKI+NZ2)
  100 CONTINUE
C
C ADJUST THE STORAGE COUNTS TO ALLOW FOR THE USE OF THE REAL AND
C     INTEGER STORAGE FOR PURPOSES OTHER THAN PURELY THE
C     FACTORIZATION ITSELF.
C THE SECOND TWO TERMS ARE THE MINUMUM AMOUNT REQUIRED BY MA27N/ND.
      NRLNEC = MAX(NRLNEC,N+MAX(NZ,NZ1))
      NRLTOT = MAX(NRLTOT,N+MAX(NZ,NZ1))
      NRLNEC = MIN(NRLNEC,NRLTOT)
      NIRNEC = MAX(NZ,NIRNEC)
      NIRTOT = MAX(NZ,NIRTOT)
      NIRNEC = MIN(NIRNEC,NIRTOT)

      INFO(3) = NRLTOT
      INFO(4) = NIRTOT
      INFO(5) = NRLNEC
      INFO(6) = NIRNEC
      INFO(7) = NRLADU
      INFO(8) = NIRADU
      RETURN

      END 
      SUBROUTINE MA27ND(N,NZ,NZ1,A,LA,IRN,ICN,IW,LIW,PERM,IW2,ICNTL,
     +                 INFO)
C
C SORT PRIOR TO FACTORIZATION USING MA27O/OD.
C
C THIS SUBROUTINE REORDERS THE USER'S INPUT SO THAT THE UPPER TRIANGLE
C     OF THE PERMUTED MATRIX, INCLUDING THE DIAGONAL, IS
C     HELD ORDERED BY ROWS AT THE END OF THE STORAGE FOR A AND IW.
C     IT IGNORES ENTRIES WITH ONE OR BOTH INDICES OUT OF RANGE AND
C     ACCUMULATES DIAGONAL ENTRIES.
C     IT ADDS EXPLICIT ZEROS ON THE DIAGONAL WHERE NECESSARY.
C N      - MUST BE SET TO THE ORDER OF THE MATRIX.
C          IT IS NOT ALTERED BY MA27N/ND.
C NZ     - ON ENTRY NZ MUST BE SET TO THE NUMBER
C          OF NON-ZEROS INPUT.  NOT ALTERED BY MA27N/ND.
C NZ1    - ON EXIT NZ1 WILL BE EQUAL TO THE NUMBER OF ENTRIES IN THE
C          SORTED MATRIX.
C A      - ON ENTRY A(I) MUST
C          HOLD THE VALUE OF THE ORIGINAL MATRIX ELEMENT IN POSITION
C          (IRN(I),ICN(I)),I=1,NZ.  ON EXIT A(LA-NZ1+I),I=1,NZ1 HOLDS
C          THE UPPER TRIANGLE OF THE PERMUTED MATRIX BY ROWS WITH
C          THE DIAGONAL ENTRY FIRST ALTHOUGH THERE IS NO FURTHER
C          ORDERING WITHIN THE ROWS THEMSELVES.
C LA     - LENGTH OF ARRAY A. MUST BE AT LEAST N+MAX(NZ,NZ1).
C          IT IS NOT ALTERED BY MA27N/ND.
C IRN    - IRN(I) MUST BE SET TO
C          HOLD THE ROW INDEX OF ENTRY A(I),I=1,NZ.  IRN WILL BE
C          UNALTERED BY MA27N/ND, UNLESS IT IS EQUIVALENCED WITH IW.
C ICN    - ICN(I) MUST BE SET TO
C          HOLD THE COLUMN INDEX OF ENTRY A(I),I=1,NZ.  ICN WILL BE
C          UNALTERED BY MA27N/ND, UNLESS IT IS EQUIVALENCED WITH IW.
C IW     - USED AS WORKSPACE AND ON
C          EXIT, ENTRIES IW(LIW-NZ1+I),I=1,NZ1 HOLD THE COLUMN INDICES
C          (THE ORIGINAL UNPERMUTED INDICES) OF THE CORRESPONDING ENTRY
C          OF A WITH THE FIRST ENTRY FOR EACH ROW FLAGGED NEGATIVE.
C          IRN(1) MAY BE EQUIVALENCED WITH IW(1) AND ICN(1) MAY BE
C          EQUIVALENCED WITH IW(K) WHERE K.GT.NZ.
C LIW    - LENGTH OF ARRAY IW. MUST BE AT LEAST AS
C          GREAT AS THE MAXIMUM OF NZ AND NZ1.
C          NOT ALTERED BY MA27N/ND.
C PERM   - PERM(I) HOLDS THE
C          POSITION IN THE TENTATIVE PIVOT ORDER OF ROW I IN THE
C          ORIGINAL MATRIX,I=1,N. NOT ALTERED BY MA27N/ND.
C IW2    - USED AS WORKSPACE.
C          SEE COMMENTS IN CODE IMMEDIATELY PRIOR TO
C          EACH USE.
C ICNTL is an INTEGER array of length 30, see MA27A/AD.
C INFO is an INTEGER array of length 20, see MA27A/AD.
C   INFO(1)  - ON EXIT FROM MA27N/ND, A ZERO VALUE OF
C          INFO(1) INDICATES THAT NO ERROR HAS BEEN DETECTED.
C          POSSIBLE NON-ZERO VALUES ARE ..
C          +1  WARNING.  INDICES OUT OF RANGE.  THESE ARE IGNORED,
C              THEIR NUMBER IS RECORDED IN INFO(2) OF MA27E/ED AND
C              MESSAGES IDENTIFYING THE FIRST TEN ARE OUTPUT ON UNIT
C              ICNTL(2).
C          -3  INTEGER ARRAY IW IS TOO SMALL.
C          -4  DOUBLE PRECISION ARRAY A IS TOO SMALL.
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO
      PARAMETER (ZERO=0.0D0)
C     ..
C     .. Scalar Arguments ..
      INTEGER LA,LIW,N,NZ,NZ1
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION A(LA)
      INTEGER ICN(*),IRN(*),IW(LIW),IW2(N),PERM(N),ICNTL(30),INFO(20)
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION ANEXT,ANOW
      INTEGER I,IA,ICH,II,IIW,INEW,IOLD,IPOS,J1,J2,JJ,JNEW,JOLD,JPOS,K
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC MIN
C     ..
C     .. Executable Statements ..
      INFO(1) = 0
C INITIALIZE WORK ARRAY (IW2) IN PREPARATION FOR
C     COUNTING NUMBERS OF NON-ZEROS IN THE ROWS AND INITIALIZE
C     LAST N ENTRIES IN A WHICH WILL HOLD THE DIAGONAL ENTRIES
      IA = LA
      DO 10 IOLD = 1,N
        IW2(IOLD) = 1
        A(IA) = ZERO
        IA = IA - 1
   10 CONTINUE
C SCAN INPUT COPYING ROW INDICES FROM IRN TO THE FIRST NZ POSITIONS
C     IN IW.  THE NEGATIVE OF THE INDEX IS HELD TO FLAG ENTRIES FOR
C     THE IN-PLACE SORT.  ENTRIES IN IW CORRESPONDING TO DIAGONALS AND
C     ENTRIES WITH OUT-OF-RANGE INDICES ARE SET TO ZERO.
C     FOR DIAGONAL ENTRIES, REALS ARE ACCUMULATED IN THE LAST N
C     LOCATIONS OF A.
C     THE NUMBER OF ENTRIES IN EACH ROW OF THE PERMUTED MATRIX IS
C     ACCUMULATED IN IW2.
C INDICES OUT OF RANGE ARE IGNORED  AFTER BEING COUNTED AND
C     AFTER APPROPRIATE MESSAGES HAVE BEEN PRINTED.
      INFO(2) = 0
C NZ1 IS THE NUMBER OF NON-ZEROS HELD AFTER INDICES OUT OF RANGE HAVE
C     BEEN IGNORED AND DIAGONAL ENTRIES ACCUMULATED.
      NZ1 = N
      IF (NZ.EQ.0) GO TO 80
      DO 70 K = 1,NZ
        IOLD = IRN(K)
        IF (IOLD.GT.N .OR. IOLD.LE.0) GO TO 30
        JOLD = ICN(K)
        IF (JOLD.GT.N .OR. JOLD.LE.0) GO TO 30
        INEW = PERM(IOLD)
        JNEW = PERM(JOLD)
        IF (INEW.NE.JNEW) GO TO 20
        IA = LA - N + IOLD
        A(IA) = A(IA) + A(K)
        GO TO 60

   20   INEW = MIN(INEW,JNEW)
C INCREMENT NUMBER OF ENTRIES IN ROW INEW.
        IW2(INEW) = IW2(INEW) + 1
        IW(K) = -IOLD
        NZ1 = NZ1 + 1
        GO TO 70
C ENTRY OUT OF RANGE.  IT WILL BE IGNORED AND A FLAG SET.
   30   INFO(1) = 1
        INFO(2) = INFO(2) + 1
        IF (INFO(2).LE.1 .AND. ICNTL(2).GT.0) THEN
          WRITE (ICNTL(2),FMT=40) INFO(1)
        ENDIF

   40   FORMAT (' *** WARNING MESSAGE FROM SUBROUTINE MA27BD',
     +          '  *** INFO(1) =',I2)

        IF (INFO(2).LE.10 .AND. ICNTL(2).GT.0) THEN
          WRITE (ICNTL(2),FMT=50) K,IRN(K),ICN(K)
        END IF

   50   FORMAT (I6,'TH NON-ZERO (IN ROW',I6,' AND COLUMN',I6,
     +         ') IGNORED')

   60   IW(K) = 0
   70 CONTINUE
C CALCULATE POINTERS (IN IW2) TO THE POSITION IMMEDIATELY AFTER THE END
C     OF EACH ROW.
   80 IF (NZ.LT.NZ1 .AND. NZ1.NE.N) GO TO 100
C ROOM IS INCLUDED FOR THE DIAGONALS.
      K = 1
      DO 90 I = 1,N
        K = K + IW2(I)
        IW2(I) = K
   90 CONTINUE
      GO TO 120
C ROOM IS NOT INCLUDED FOR THE DIAGONALS.
  100 K = 1
      DO 110 I = 1,N
        K = K + IW2(I) - 1
        IW2(I) = K
  110 CONTINUE
C FAIL IF INSUFFICIENT SPACE IN ARRAYS A OR IW.
  120 IF (NZ1.GT.LIW) GO TO 210
      IF (NZ1+N.GT.LA) GO TO 220
C NOW RUN THROUGH NON-ZEROS IN ORDER PLACING THEM IN THEIR NEW
C POSITION AND DECREMENTING APPROPRIATE IW2 ENTRY.  IF WE ARE
C ABOUT TO OVERWRITE AN ENTRY NOT YET MOVED, WE MUST DEAL WITH
C THIS AT THIS TIME.
      IF (NZ1.EQ.N) GO TO 180
      DO 140 K = 1,NZ
        IOLD = -IW(K)
        IF (IOLD.LE.0) GO TO 140
        JOLD = ICN(K)
        ANOW = A(K)
        IW(K) = 0
        DO 130 ICH = 1,NZ
          INEW = PERM(IOLD)
          JNEW = PERM(JOLD)
          INEW = MIN(INEW,JNEW)
          IF (INEW.EQ.PERM(JOLD)) JOLD = IOLD
          JPOS = IW2(INEW) - 1
          IOLD = -IW(JPOS)
          ANEXT = A(JPOS)
          A(JPOS) = ANOW
          IW(JPOS) = JOLD
          IW2(INEW) = JPOS
          IF (IOLD.EQ.0) GO TO 140
          ANOW = ANEXT
          JOLD = ICN(JPOS)
  130   CONTINUE
  140 CONTINUE
      IF (NZ.GE.NZ1) GO TO 180
C MOVE UP ENTRIES TO ALLOW FOR DIAGONALS.
      IPOS = NZ1
      JPOS = NZ1 - N
      DO 170 II = 1,N
        I = N - II + 1
        J1 = IW2(I)
        J2 = JPOS
        IF (J1.GT.JPOS) GO TO 160
        DO 150 JJ = J1,J2
          IW(IPOS) = IW(JPOS)
          A(IPOS) = A(JPOS)
          IPOS = IPOS - 1
          JPOS = JPOS - 1
  150   CONTINUE
  160   IW2(I) = IPOS + 1
        IPOS = IPOS - 1
  170 CONTINUE
C RUN THROUGH ROWS INSERTING DIAGONAL ENTRIES AND FLAGGING BEGINNING
C     OF EACH ROW BY NEGATING FIRST COLUMN INDEX.
  180 DO 190 IOLD = 1,N
        INEW = PERM(IOLD)
        JPOS = IW2(INEW) - 1
        IA = LA - N + IOLD
        A(JPOS) = A(IA)
        IW(JPOS) = -IOLD
  190 CONTINUE
C MOVE SORTED MATRIX TO THE END OF THE ARRAYS.
      IPOS = NZ1
      IA = LA
      IIW = LIW
      DO 200 I = 1,NZ1
        A(IA) = A(IPOS)
        IW(IIW) = IW(IPOS)
        IPOS = IPOS - 1
        IA = IA - 1
        IIW = IIW - 1
  200 CONTINUE
      GO TO 230
C **** ERROR RETURN ****
  210 INFO(1) = -3
      INFO(2) = NZ1
      GO TO 230

  220 INFO(1) = -4
      INFO(2) = NZ1 + N
C
  230 RETURN

      END
      SUBROUTINE MA27OD(N,NZ,A,LA,IW,LIW,PERM,NSTK,NSTEPS,MAXFRT,NELIM,
     +                 IW2,ICNTL,CNTL,INFO)
C
C FACTORIZATION SUBROUTINE
C
C THIS SUBROUTINE OPERATES ON THE INPUT MATRIX ORDERED BY MA27N/ND AND
C     PRODUCES THE FACTORS OF U AND D ('A'=UTRANSPOSE*D*U) FOR USE IN
C     SUBSEQUENT SOLUTIONS.  GAUSSIAN ELIMINATION IS USED WITH PIVOTS
C     CHOSEN FROM THE DIAGONAL.  TO ENSURE STABILITY, BLOCK PIVOTS OF
C     ORDER 2 WILL BE USED IF THE DIAGONAL ENTRY IS NOT LARGE ENOUGH.
C
C N      - MUST BE SET TO THE ORDER OF THE MATRIX. IT IS NOT ALTERED.
C NZ     - MUST BE SET TO THE NUMBER OF NON-ZEROS IN UPPER TRIANGLE OF
C          PERMUTED MATRIX.  NOT ALTERED BY MA27O/OD.
C A      - MUST BE SET ON INPUT TO MATRIX HELD BY ROWS REORDERED BY
C          PERMUTATION FROM MA27A/AD IN A(LA-NZ+I),I=1,NZ.   ON
C          EXIT FROM MA27O/OD, THE FACTORS OF U AND D ARE HELD IN
C          POSITIONS 1 TO POSFAC-1.
C LA     - LENGTH OF ARRAY A.  A VALUE FOR LA
C          SUFFICIENT FOR DEFINITE SYSTEMS
C          WILL HAVE BEEN PROVIDED BY MA27A/AD. NOT ALTERED BY MA27O/OD.
C IW     - MUST BE SET SO THAT,ON INPUT, IW(LIW-NZ+I),I=1,NZ
C          HOLDS THE COLUMN INDEX OF THE ENTRY IN A(LA-NZ+I).  ON EXIT,
C          IW HOLDS INTEGER INDEXING INFORMATION ON THE FACTORS.
C          THE ABSOLUTE VALUE OF THE FIRST ENTRY IN IW WILL BE SET TO
C          THE NUMBER OF BLOCK PIVOTS ACTUALLY USED.  THIS MAY BE
C          DIFFERENT FROM NSTEPS SINCE NUMERICAL CONSIDERATIONS
C          MAY PREVENT US CHOOSING A PIVOT AT EACH STAGE.  IF THIS ENTRY
C          IN IW IS NEGATIVE, THEN AT LEAST ONE TWO BY TWO
C          PIVOT HAS BEEN USED DURING THE DECOMPOSITION.
C          INTEGER INFORMATION ON EACH BLOCK PIVOT ROW FOLLOWS.  FOR
C          EACH BLOCK PIVOT ROW THE COLUMN INDICES ARE PRECEDED BY A
C          COUNT OF THE NUMBER OF ROWS AND COLUMNS IN THE BLOCK PIVOT
C          WHERE, IF ONLY ONE ROW IS PRESENT, ONLY THE NUMBER OF
C          COLUMNS TOGETHER WITH A NEGATIVE FLAG IS HELD.  THE FIRST
C          COLUMN INDEX FOR A TWO BY TWO PIVOT IS FLAGGED NEGATIVE.
C LIW    - LENGTH OF ARRAY IW.  A VALUE FOR LIW SUFFICIENT FOR
C          DEFINITE SYSTEMS
C          WILL HAVE BEEN PROVIDED BY MA27A/AD.  NOT ALTERED BY MA27O/OD
C PERM   - PERM(I) MUST BE SET TO POSITION OF ROW/COLUMN I IN THE
C          TENTATIVE PIVOT ORDER GENERATED BY MA27A/AD.
C          IT IS NOT ALTERED BY MA27O/OD.
C NSTK   - MUST BE LEFT UNCHANGED SINCE OUTPUT FROM MA27A/AD. NSTK(I)
C          GIVES THE NUMBER OF GENERATED STACK ELEMENTS ASSEMBLED AT
C          STAGE I.  IT IS NOT ALTERED BY MA27O/OD.
C NSTEPS - LENGTH OF ARRAYS NSTK AND NELIM. VALUE IS GIVEN ON OUTPUT
C          FROM MA27A/AD (WILL NEVER EXCEED N). IT IS NOT ALTERED BY
C          MA27O/OD.
C MAXFRT - NEED NOT BE SET ON INPUT.  ON OUTPUT
C          MAXFRT WILL BE SET TO THE MAXIMUM FRONT SIZE ENCOUNTERED
C          DURING THE DECOMPOSITION.
C NELIM  - MUST BE UNCHANGED SINCE OUTPUT FROM MA27A/AD. NELIM(I)
C          GIVES THE NUMBER OF ORIGINAL ROWS ASSEMBLED AT STAGE I.
C          IT IS NOT ALTERED BY MA27O/OD.
C IW2    - INTEGER ARRAY OF LENGTH N. USED AS WORKSPACE BY MA27O/OD.
C          ALTHOUGH WE COULD HAVE USED A SHORT WORD INTEGER IN THE IBM
C          VERSION, WE HAVE NOT DONE SO BECAUSE THERE IS A SPARE
C          FULL INTEGER ARRAY (USED IN THE SORT BEFORE MA27O/OD)
C          AVAILABLE WHEN MA27O/OD IS CALLED FROM MA27B/BD.
C ICNTL is an INTEGER array of length 30, see MA27A/AD.
C CNTL is a DOUBLE PRECISION array of length 5, see MA27A/AD.
C INFO is an INTEGER array of length 20, see MA27A/AD.
C   INFO(1)  - INTEGER VARIABLE.  DIAGNOSTIC FLAG.  A ZERO VALUE ON EXIT
C          INDICATES SUCCESS.  POSSIBLE NEGATIVE VALUES ARE ...
C          -3  INSUFFICIENT STORAGE FOR IW.
C          -4  INSUFFICIENT STORAGE FOR A.
C          -5  ZERO PIVOT FOUND IN FACTORIZATION OF DEFINITE MATRIX.
C
C     .. Parameters ..
      DOUBLE PRECISION ZERO,HALF,ONE
      PARAMETER (ZERO=0.0D0,HALF=0.5D0,ONE=1.0D0)
C     ..
C     .. Scalar Arguments ..
      INTEGER LA,LIW,MAXFRT,N,NSTEPS,NZ
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION A(LA),CNTL(5)
      INTEGER IW(LIW),IW2(N),NELIM(NSTEPS),NSTK(NSTEPS),PERM(N)
      INTEGER ICNTL(30),INFO(20)
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION AMAX,AMULT,AMULT1,AMULT2,DETPIV,RMAX,SWOP,
     +        THRESH,TMAX,UU
      INTEGER AINPUT,APOS,APOS1,APOS2,APOS3,ASTK,ASTK2,AZERO,I,IASS,
     +        IBEG,IDUMMY,IELL,IEND,IEXCH,IFR,IINPUT,IOLDPS,IORG,IPIV,
     +        IPMNP,IPOS,IROW,ISNPIV,ISTK,ISTK2,ISWOP,IWPOS,IX,IY,J,J1,
     +        J2,JCOL,JDUMMY,JFIRST,JJ,JJ1,JJJ,JLAST,JMAX,JMXMIP,JNEW,
     +        JNEXT,JPIV,JPOS,K,K1,K2,KDUMMY,KK,KMAX,KROW,LAELL,LAPOS2,
     +        LIELL,LNASS,LNPIV,LT,LTOPST,NASS,NBLK,NEWEL,NFRONT,NPIV,
     +        NPIVP1,NTOTPV,NUMASS,NUMORG,NUMSTK,PIVSIZ,POSFAC,POSPV1,
     +        POSPV2
      INTEGER IDIAG
C IDIAG IS A TEMPORARY FOR THE DISPLACEMENT FROM THE START OF THE 
C     ASSEMBLED MATRIX (OF ORDER IX) OF THE DIAGONAL ENTRY IN ITS ROW IY.
      INTEGER NTWO,NEIG,NCMPBI,NCMPBR,NRLBDU,NIRBDU
C     ..
C     .. External Subroutines ..
      EXTERNAL MA27PD
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC ABS,MAX,MIN
C     ..
C     .. Executable Statements ..
C INITIALIZATION.
C NBLK IS THE NUMBER OF BLOCK PIVOTS USED.
      NBLK = 0
      NTWO = 0
      NEIG = 0
      NCMPBI = 0
      NCMPBR = 0
      MAXFRT = 0
      NRLBDU = 0
      NIRBDU = 0
C A PRIVATE VARIABLE UU IS SET TO CNTL(1), SO THAT CNTL(1) WILL REMAIN
C UNALTERED.
      UU = MIN(CNTL(1),HALF)
      UU = MAX(UU,-HALF)
      DO 10 I = 1,N
        IW2(I) = 0
   10 CONTINUE
C IWPOS IS POINTER TO FIRST FREE POSITION FOR FACTORS IN IW.
C POSFAC IS POINTER FOR FACTORS IN A. AT EACH PASS THROUGH THE
C     MAJOR LOOP POSFAC INITIALLY POINTS TO THE FIRST FREE LOCATION
C     IN A AND THEN IS SET TO THE POSITION OF THE CURRENT PIVOT IN A.
C ISTK IS POINTER TO TOP OF STACK IN IW.
C ISTK2 IS POINTER TO BOTTOM OF STACK IN IW (NEEDED BY COMPRESS).
C ASTK IS POINTER TO TOP OF STACK IN A.
C ASTK2 IS POINTER TO BOTTOM OF STACK IN A (NEEDED BY COMPRESS).
C IINPUT IS POINTER TO CURRENT POSITION IN ORIGINAL ROWS IN IW.
C AINPUT IS POINTER TO CURRENT POSITION IN ORIGINAL ROWS IN A.
C AZERO IS POINTER TO LAST POSITION ZEROED IN A.
C NTOTPV IS THE TOTAL NUMBER OF PIVOTS SELECTED. THIS IS USED
C     TO DETERMINE WHETHER THE MATRIX IS SINGULAR.
      IWPOS = 2
      POSFAC = 1
      ISTK = LIW - NZ + 1
      ISTK2 = ISTK - 1
      ASTK = LA - NZ + 1
      ASTK2 = ASTK - 1
      IINPUT = ISTK
      AINPUT = ASTK
      AZERO = 0
      NTOTPV = 0
C NUMASS IS THE ACCUMULATED NUMBER OF ROWS ASSEMBLED SO FAR.
      NUMASS = 0
C
C EACH PASS THROUGH THIS MAIN LOOP PERFORMS ALL THE OPERATIONS
C     ASSOCIATED WITH ONE SET OF ASSEMBLY/ELIMINATIONS.
      DO 760 IASS = 1,NSTEPS
C NASS WILL BE SET TO THE NUMBER OF FULLY ASSEMBLED VARIABLES IN
C     CURRENT NEWLY CREATED ELEMENT.
        NASS = NELIM(IASS)
C NEWEL IS A POINTER INTO IW TO CONTROL OUTPUT OF INTEGER INFORMATION
C     FOR NEWLY CREATED ELEMENT.
        NEWEL = IWPOS + 1
C SYMBOLICALLY ASSEMBLE INCOMING ROWS AND GENERATED STACK ELEMENTS
C     ORDERING THE RESULTANT ELEMENT ACCORDING TO PERMUTATION PERM.  WE
C     ASSEMBLE THE STACK ELEMENTS FIRST BECAUSE THESE WILL ALREADY BE
C     ORDERED.
C SET HEADER POINTER FOR MERGE OF INDEX LISTS.
        JFIRST = N + 1
C INITIALIZE NUMBER OF VARIABLES IN CURRENT FRONT.
        NFRONT = 0
        NUMSTK = NSTK(IASS)
        LTOPST = 1
        LNASS = 0
C JUMP IF NO STACK ELEMENTS ARE BEING ASSEMBLED AT THIS STAGE.
        IF (NUMSTK.EQ.0) GO TO 80
        J2 = ISTK - 1
        LNASS = NASS
        LTOPST = ((IW(ISTK)+1)*IW(ISTK))/2
        DO 70 IELL = 1,NUMSTK
C ASSEMBLE ELEMENT IELL PLACING
C     THE INDICES INTO A LINKED LIST IN IW2 ORDERED
C     ACCORDING TO PERM.
          JNEXT = JFIRST
          JLAST = N + 1
          J1 = J2 + 2
          J2 = J1 - 1 + IW(J1-1)
C RUN THROUGH INDEX LIST OF STACK ELEMENT IELL.
          DO 60 JJ = J1,J2
            J = IW(JJ)
C JUMP IF ALREADY ASSEMBLED
            IF (IW2(J).GT.0) GO TO 60
            JNEW = PERM(J)
C IF VARIABLE WAS PREVIOUSLY FULLY SUMMED BUT WAS NOT PIVOTED ON
C     EARLIER BECAUSE OF NUMERICAL TEST, INCREMENT NUMBER OF FULLY
C     SUMMED ROWS/COLUMNS IN FRONT.
            IF (JNEW.LE.NUMASS) NASS = NASS + 1
C FIND POSITION IN LINKED LIST FOR NEW VARIABLE.  NOTE THAT WE START
C     FROM WHERE WE LEFT OFF AFTER ASSEMBLY OF PREVIOUS VARIABLE.
            DO 20 IDUMMY = 1,N
              IF (JNEXT.EQ.N+1) GO TO 30
              IF (PERM(JNEXT).GT.JNEW) GO TO 30
              JLAST = JNEXT
              JNEXT = IW2(JLAST)
   20       CONTINUE
   30       IF (JLAST.NE.N+1) GO TO 40
            JFIRST = J
            GO TO 50

   40       IW2(JLAST) = J
   50       IW2(J) = JNEXT
            JLAST = J
C INCREMENT NUMBER OF VARIABLES IN THE FRONT.
            NFRONT = NFRONT + 1
   60     CONTINUE
   70   CONTINUE
        LNASS = NASS - LNASS
C NOW INCORPORATE ORIGINAL ROWS.  NOTE THAT THE COLUMNS IN THESE ROWS
C     NEED NOT BE IN ORDER. WE ALSO PERFORM
C     A SWOP SO THAT THE DIAGONAL ENTRY IS THE FIRST IN ITS
C     ROW.  THIS ALLOWS US TO AVOID STORING THE INVERSE OF ARRAY PERM.
   80   NUMORG = NELIM(IASS)
        J1 = IINPUT
        DO 150 IORG = 1,NUMORG
          J = -IW(J1)
          DO 140 IDUMMY = 1,LIW
            JNEW = PERM(J)
C JUMP IF VARIABLE ALREADY INCLUDED.
            IF (IW2(J).GT.0) GO TO 130
C HERE WE MUST ALWAYS START OUR SEARCH AT THE BEGINNING.
            JLAST = N + 1
            JNEXT = JFIRST
            DO 90 JDUMMY = 1,N
              IF (JNEXT.EQ.N+1) GO TO 100
              IF (PERM(JNEXT).GT.JNEW) GO TO 100
              JLAST = JNEXT
              JNEXT = IW2(JLAST)
   90       CONTINUE
  100       IF (JLAST.NE.N+1) GO TO 110
            JFIRST = J
            GO TO 120

  110       IW2(JLAST) = J
  120       IW2(J) = JNEXT
C INCREMENT NUMBER OF VARIABLES IN FRONT.
            NFRONT = NFRONT + 1
  130       J1 = J1 + 1
            IF (J1.GT.LIW) GO TO 150
            J = IW(J1)
            IF (J.LT.0) GO TO 150
  140     CONTINUE
  150   CONTINUE
C NOW RUN THROUGH LINKED LIST IW2 PUTTING INDICES OF VARIABLES IN NEW
C     ELEMENT INTO IW AND SETTING IW2 ENTRY TO POINT TO THE RELATIVE
C     POSITION OF THE VARIABLE IN THE NEW ELEMENT.
        IF (NEWEL+NFRONT.LT.ISTK) GO TO 160
C COMPRESS IW.
        CALL MA27PD(A,IW,ISTK,ISTK2,IINPUT,2,NCMPBR,NCMPBI)
        IF (NEWEL+NFRONT.LT.ISTK) GO TO 160
        INFO(2) = LIW + 1 + NEWEL + NFRONT - ISTK
        GO TO 770

  160   J = JFIRST
        DO 170 IFR = 1,NFRONT
          NEWEL = NEWEL + 1
          IW(NEWEL) = J
          JNEXT = IW2(J)
          IW2(J) = NEWEL - (IWPOS+1)
          J = JNEXT
  170   CONTINUE
C
C ASSEMBLE REALS INTO FRONTAL MATRIX.
        MAXFRT = MAX(MAXFRT,NFRONT)
        IW(IWPOS) = NFRONT
C FIRST ZERO OUT FRONTAL MATRIX AS APPROPRIATE FIRST CHECKING TO SEE
C     IF THERE IS SUFFICIENT SPACE.
        LAELL = ((NFRONT+1)*NFRONT)/2
        APOS2 = POSFAC + LAELL - 1
        IF (NUMSTK.NE.0) LNASS = LNASS* (2*NFRONT-LNASS+1)/2
        IF (POSFAC+LNASS-1.GE.ASTK) GO TO 180
        IF (APOS2.LT.ASTK+LTOPST-1) GO TO 190
C COMPRESS A.
  180   CALL MA27PD(A,IW,ASTK,ASTK2,AINPUT,1,NCMPBR,NCMPBI)
        IF (POSFAC+LNASS-1.GE.ASTK) GO TO 780
        IF (APOS2.GE.ASTK+LTOPST-1) GO TO 780
  190   IF (APOS2.LE.AZERO) GO TO 220
        APOS = AZERO + 1
        LAPOS2 = MIN(APOS2,ASTK-1)
        IF (LAPOS2.LT.APOS) GO TO 210
        DO 200 K = APOS,LAPOS2
          A(K) = ZERO
  200   CONTINUE
  210   AZERO = APOS2
C JUMP IF THERE ARE NO STACK ELEMENTS TO ASSEMBLE.
  220   IF (NUMSTK.EQ.0) GO TO 260
C PLACE REALS CORRESPONDING TO STACK ELEMENTS IN CORRECT POSITIONS IN A.
        DO 250 IELL = 1,NUMSTK
          J1 = ISTK + 1
          J2 = ISTK + IW(ISTK)
          DO 240 JJ = J1,J2
            IROW = IW(JJ)
            IROW = IW2(IROW)
            IX = NFRONT
            IY = IROW
            IDIAG = ((IY-1)* (2*IX-IY+2))/2
            APOS = POSFAC + IDIAG
            DO 230 JJJ = JJ,J2
              J = IW(JJJ)
              APOS2 = APOS + IW2(J) - IROW
              A(APOS2) = A(APOS2) + A(ASTK)
              A(ASTK) = ZERO
              ASTK = ASTK + 1
  230       CONTINUE
  240     CONTINUE
C INCREMENT STACK POINTER.
          ISTK = J2 + 1
  250   CONTINUE
C INCORPORATE REALS FROM ORIGINAL ROWS.
  260   DO 280 IORG = 1,NUMORG
          J = -IW(IINPUT)
C WE CAN DO THIS BECAUSE THE DIAGONAL IS NOW THE FIRST ENTRY.
          IROW = IW2(J)
          IX = NFRONT
          IY = IROW
          IDIAG = ((IY-1)* (2*IX-IY+2))/2
          APOS = POSFAC + IDIAG
C THE FOLLOWING LOOP GOES FROM 1 TO NZ BECAUSE THERE MAY BE DUPLICATES.
          DO 270 IDUMMY = 1,NZ
            APOS2 = APOS + IW2(J) - IROW
            A(APOS2) = A(APOS2) + A(AINPUT)
            AINPUT = AINPUT + 1
            IINPUT = IINPUT + 1
            IF (IINPUT.GT.LIW) GO TO 280
            J = IW(IINPUT)
            IF (J.LT.0) GO TO 280
  270     CONTINUE
  280   CONTINUE
C RESET IW2 AND NUMASS.
        NUMASS = NUMASS + NUMORG
        J1 = IWPOS + 2
        J2 = IWPOS + NFRONT + 1
        DO 290 K = J1,J2
          J = IW(K)
          IW2(J) = 0
  290   CONTINUE
C PERFORM PIVOTING ON ASSEMBLED ELEMENT.
C NPIV IS THE NUMBER OF PIVOTS SO FAR SELECTED.
C LNPIV IS THE NUMBER OF PIVOTS SELECTED AFTER THE LAST PASS THROUGH
C     THE THE FOLLOWING LOOP.
        LNPIV = -1
        NPIV = 0
        DO 650 KDUMMY = 1,NASS
          IF (NPIV.EQ.NASS) GO TO 660
          IF (NPIV.EQ.LNPIV) GO TO 660
          LNPIV = NPIV
          NPIVP1 = NPIV + 1
C JPIV IS USED AS A FLAG TO INDICATE WHEN 2 BY 2 PIVOTING HAS OCCURRED
C     SO THAT IPIV IS INCREMENTED CORRECTLY.
          JPIV = 1
C NASS IS MAXIMUM POSSIBLE NUMBER OF PIVOTS.
C WE EITHER TAKE THE DIAGONAL ENTRY OR THE 2 BY 2 PIVOT WITH THE
C     LARGEST OFF-DIAGONAL AT EACH STAGE.
C EACH PASS THROUGH THIS LOOP TRIES TO CHOOSE ONE PIVOT.
          DO 640 IPIV = NPIVP1,NASS
            JPIV = JPIV - 1
C JUMP IF WE HAVE JUST PROCESSED A 2 BY 2 PIVOT.
            IF (JPIV.EQ.1) GO TO 640
            IX = NFRONT-NPIV
            IY = IPIV-NPIV
            IDIAG = ((IY-1)* (2*IX-IY+2))/2
            APOS = POSFAC + IDIAG
C IF THE USER HAS INDICATED THAT THE MATRIX IS DEFINITE, WE
C     DO NOT NEED TO TEST FOR STABILITY BUT WE DO CHECK TO SEE IF THE
C     PIVOT IS NON-ZERO OR HAS CHANGED SIGN.
C     IF IT IS ZERO, WE EXIT WITH AN ERROR. IF IT HAS CHANGED SIGN
C     AND U WAS SET NEGATIVE, THEN WE AGAIN EXIT IMMEDIATELY.  IF THE
C     PIVOT CHANGES SIGN AND U WAS ZERO, WE CONTINUE WITH THE
C     FACTORIZATION BUT PRINT A WARNING MESSAGE ON UNIT ICNTL(2).
C ISNPIV HOLDS A FLAG FOR THE SIGN OF THE PIVOTS TO DATE SO THAT
C     A SIGN CHANGE WHEN DECOMPOSING AN ALLEGEDLY DEFINITE MATRIX CAN
C     BE DETECTED.
            IF (UU.GT.ZERO) GO TO 320
            IF (ABS(A(APOS)).LE.CNTL(3)) GO TO 790
C JUMP IF THIS IS NOT THE FIRST PIVOT TO BE SELECTED.
            IF (NTOTPV.GT.0) GO TO 300
C SET ISNPIV.
            IF (A(APOS).GT.ZERO) ISNPIV = 1
            IF (A(APOS).LT.ZERO) ISNPIV = -1
  300       IF (A(APOS).GT.ZERO .AND. ISNPIV.EQ.1) GO TO 560
            IF (A(APOS).LT.ZERO .AND. ISNPIV.EQ.-1) GO TO 560
            IF (INFO(1).NE.2) INFO(2) = 0
            INFO(2) = INFO(2) + 1
            INFO(1) = 2
            I = NTOTPV + 1
            IF (ICNTL(2).GT.0 .AND. INFO(2).LE.10) THEN
              WRITE (ICNTL(2),FMT=310) INFO(1),I
            END IF

  310       FORMAT (' *** WARNING MESSAGE FROM SUBROUTINE MA27BD',
     +              '  *** INFO(1) =',I2,/,' PIVOT',I6,
     +             ' HAS DIFFERENT SIGN FROM THE PREVIOUS ONE')

            ISNPIV = -ISNPIV
            IF (UU.EQ.ZERO) GO TO 560
            GO TO 800

  320       AMAX = ZERO
            TMAX = AMAX
C FIND LARGEST ENTRY TO RIGHT OF DIAGONAL IN ROW OF PROSPECTIVE PIVOT
C     IN THE FULLY-SUMMED PART.  ALSO RECORD COLUMN OF THIS LARGEST
C     ENTRY.
            J1 = APOS + 1
            J2 = APOS + NASS - IPIV
            IF (J2.LT.J1) GO TO 340
            DO 330 JJ = J1,J2
              IF (ABS(A(JJ)).LE.AMAX) GO TO 330
              JMAX = IPIV + JJ - J1 + 1
              AMAX = ABS(A(JJ))
  330       CONTINUE
C DO SAME AS ABOVE FOR NON-FULLY-SUMMED PART ONLY HERE WE DO NOT NEED
C     TO RECORD COLUMN SO LOOP IS SIMPLER.
  340       J1 = J2 + 1
            J2 = APOS + NFRONT - IPIV
            IF (J2.LT.J1) GO TO 360
            DO 350 JJ = J1,J2
              TMAX = MAX(ABS(A(JJ)),TMAX)
  350       CONTINUE
C NOW CALCULATE LARGEST ENTRY IN OTHER PART OF ROW.
  360       RMAX = MAX(TMAX,AMAX)
            APOS1 = APOS
            KK = NFRONT - IPIV
            LT = IPIV - (NPIV+1)
            IF (LT.EQ.0) GO TO 380
            DO 370 K = 1,LT
              KK = KK + 1
              APOS1 = APOS1 - KK
              RMAX = MAX(RMAX,ABS(A(APOS1)))
  370       CONTINUE
C JUMP IF STABILITY TEST SATISFIED.
  380       IF (ABS(A(APOS)).GT.MAX(CNTL(3),UU*RMAX)) GO TO 450
C CHECK BLOCK PIVOT OF ORDER 2 FOR STABILITY.
            IF (ABS(AMAX).LE.CNTL(3)) GO TO 640
            IX = NFRONT-NPIV
            IY = JMAX-NPIV
            IDIAG = ((IY-1)* (2*IX-IY+2))/2
            APOS2 = POSFAC + IDIAG
            DETPIV = A(APOS)*A(APOS2) - AMAX*AMAX
            THRESH = ABS(DETPIV)
C SET THRESH TO U TIMES THE RECIPROCAL OF THE MAX-NORM OF THE INVERSE
C     OF THE PROSPECTIVE BLOCK.
            THRESH = THRESH/ (UU*MAX(ABS(A(APOS))+AMAX,
     +               ABS(A(APOS2))+AMAX))
C CHECK 2 BY 2 PIVOT FOR STABILITY.
C FIRST CHECK AGAINST ROW IPIV.
            IF (THRESH.LE.RMAX) GO TO 640
C FIND LARGEST ENTRY IN ROW JMAX.
C FIND MAXIMUM TO THE RIGHT OF THE DIAGONAL.
            RMAX = ZERO
            J1 = APOS2 + 1
            J2 = APOS2 + NFRONT - JMAX
            IF (J2.LT.J1) GO TO 400
            DO 390 JJ = J1,J2
              RMAX = MAX(RMAX,ABS(A(JJ)))
  390       CONTINUE
C NOW CHECK TO THE LEFT OF THE DIAGONAL.
C WE USE TWO LOOPS TO AVOID TESTING FOR ROW IPIV INSIDE THE LOOP.
  400       KK = NFRONT - JMAX + 1
            APOS3 = APOS2
            JMXMIP = JMAX - IPIV - 1
            IF (JMXMIP.EQ.0) GO TO 420
            DO 410 K = 1,JMXMIP
              APOS2 = APOS2 - KK
              KK = KK + 1
              RMAX = MAX(RMAX,ABS(A(APOS2)))
  410       CONTINUE
  420       IPMNP = IPIV - NPIV - 1
            IF (IPMNP.EQ.0) GO TO 440
            APOS2 = APOS2 - KK
            KK = KK + 1
            DO 430 K = 1,IPMNP
              APOS2 = APOS2 - KK
              KK = KK + 1
              RMAX = MAX(RMAX,ABS(A(APOS2)))
  430       CONTINUE
  440       IF (THRESH.LE.RMAX) GO TO 640
            PIVSIZ = 2
            GO TO 460

  450       PIVSIZ = 1
  460       IROW = IPIV - NPIV
C
C PIVOT HAS BEEN CHOSEN.  IF BLOCK PIVOT OF ORDER 2, PIVSIZ IS EQUAL TO
C     TWO OTHERWISE PIVSIZ EQUALS ONE..
C THE FOLLOWING LOOP MOVES THE PIVOT BLOCK TO THE TOP LEFT HAND CORNER
C     OF THE FRONTAL MATRIX.
            DO 550 KROW = 1,PIVSIZ
C WE JUMP IF SWOP IS NOT NECESSARY.
              IF (IROW.EQ.1) GO TO 530
              J1 = POSFAC + IROW
              J2 = POSFAC + NFRONT - (NPIV+1)
              IF (J2.LT.J1) GO TO 480
              APOS2 = APOS + 1
C SWOP PORTION OF ROWS WHOSE COLUMN INDICES ARE GREATER THAN LATER ROW.
              DO 470 JJ = J1,J2
                SWOP = A(APOS2)
                A(APOS2) = A(JJ)
                A(JJ) = SWOP
                APOS2 = APOS2 + 1
  470         CONTINUE
  480         J1 = POSFAC + 1
              J2 = POSFAC + IROW - 2
              APOS2 = APOS
              KK = NFRONT - (IROW+NPIV)
              IF (J2.LT.J1) GO TO 500
C SWOP PORTION OF ROWS/COLUMNS WHOSE INDICES LIE BETWEEN THE TWO ROWS.
              DO 490 JJJ = J1,J2
                JJ = J2 - JJJ + J1
                KK = KK + 1
                APOS2 = APOS2 - KK
                SWOP = A(APOS2)
                A(APOS2) = A(JJ)
                A(JJ) = SWOP
  490         CONTINUE
  500         IF (NPIV.EQ.0) GO TO 520
              APOS1 = POSFAC
              KK = KK + 1
              APOS2 = APOS2 - KK
C SWOP PORTION OF COLUMNS WHOSE INDICES ARE LESS THAN EARLIER ROW.
              DO 510 JJ = 1,NPIV
                KK = KK + 1
                APOS1 = APOS1 - KK
                APOS2 = APOS2 - KK
                SWOP = A(APOS2)
                A(APOS2) = A(APOS1)
                A(APOS1) = SWOP
  510         CONTINUE
C SWOP DIAGONALS AND INTEGER INDEXING INFORMATION
  520         SWOP = A(APOS)
              A(APOS) = A(POSFAC)
              A(POSFAC) = SWOP
              IPOS = IWPOS + NPIV + 2
              IEXCH = IWPOS + IROW + NPIV + 1
              ISWOP = IW(IPOS)
              IW(IPOS) = IW(IEXCH)
              IW(IEXCH) = ISWOP
  530         IF (PIVSIZ.EQ.1) GO TO 550
C SET VARIABLES FOR THE SWOP OF SECOND ROW OF BLOCK PIVOT.
              IF (KROW.EQ.2) GO TO 540
              IROW = JMAX - (NPIV+1)
              JPOS = POSFAC
              POSFAC = POSFAC + NFRONT - NPIV
              NPIV = NPIV + 1
              APOS = APOS3
              GO TO 550
C RESET VARIABLES PREVIOUSLY SET FOR SECOND PASS.
  540         NPIV = NPIV - 1
              POSFAC = JPOS
  550       CONTINUE
C
            IF (PIVSIZ.EQ.2) GO TO 600
C PERFORM THE ELIMINATION USING ENTRY (IPIV,IPIV) AS PIVOT.
C WE STORE U AND DINVERSE.
  560       A(POSFAC) = ONE/A(POSFAC)
            IF (A(POSFAC).LT.ZERO) NEIG = NEIG + 1
            J1 = POSFAC + 1
            J2 = POSFAC + NFRONT - (NPIV+1)
            IF (J2.LT.J1) GO TO 590
            IBEG = J2 + 1
            DO 580 JJ = J1,J2
              AMULT = -A(JJ)*A(POSFAC)
              IEND = IBEG + NFRONT - (NPIV+JJ-J1+2)
C THE FOLLOWING SPECIAL COMMENT FORCES VECTORIZATION ON THE CRAY-1.
CDIR$ IVDEP
              DO 570 IROW = IBEG,IEND
                JCOL = JJ + IROW - IBEG
                A(IROW) = A(IROW) + AMULT*A(JCOL)
  570         CONTINUE
              IBEG = IEND + 1
              A(JJ) = AMULT
  580       CONTINUE
  590       NPIV = NPIV + 1
            NTOTPV = NTOTPV + 1
            JPIV = 1
            POSFAC = POSFAC + NFRONT - NPIV + 1
            GO TO 640
C PERFORM ELIMINATION USING BLOCK PIVOT OF ORDER TWO.
C REPLACE BLOCK PIVOT BY ITS INVERSE.
C SET FLAG TO INDICATE USE OF 2 BY 2 PIVOT IN IW.
  600       IPOS = IWPOS + NPIV + 2
            NTWO = NTWO + 1
            IW(IPOS) = -IW(IPOS)
            POSPV1 = POSFAC
            POSPV2 = POSFAC + NFRONT - NPIV
            SWOP = A(POSPV2)
            IF (DETPIV.LT.ZERO) NEIG = NEIG + 1
            IF (DETPIV.GT.ZERO .AND. SWOP.LT.ZERO) NEIG = NEIG + 2
            A(POSPV2) = A(POSPV1)/DETPIV
            A(POSPV1) = SWOP/DETPIV
            A(POSPV1+1) = -A(POSPV1+1)/DETPIV
            J1 = POSPV1 + 2
            J2 = POSPV1 + NFRONT - (NPIV+1)
            IF (J2.LT.J1) GO TO 630
            JJ1 = POSPV2
            IBEG = POSPV2 + NFRONT - (NPIV+1)
            DO 620 JJ = J1,J2
              JJ1 = JJ1 + 1
              AMULT1 = - (A(POSPV1)*A(JJ)+A(POSPV1+1)*A(JJ1))
              AMULT2 = - (A(POSPV1+1)*A(JJ)+A(POSPV2)*A(JJ1))
              IEND = IBEG + NFRONT - (NPIV+JJ-J1+3)
C THE FOLLOWING SPECIAL COMMENT FORCES VECTORIZATION ON THE CRAY-1.
CDIR$ IVDEP
              DO 610 IROW = IBEG,IEND
                K1 = JJ + IROW - IBEG
                K2 = JJ1 + IROW - IBEG
                A(IROW) = A(IROW) + AMULT1*A(K1) + AMULT2*A(K2)
  610         CONTINUE
              IBEG = IEND + 1
              A(JJ) = AMULT1
              A(JJ1) = AMULT2
  620       CONTINUE
  630       NPIV = NPIV + 2
            NTOTPV = NTOTPV + 2
            JPIV = 2
            POSFAC = POSPV2 + NFRONT - NPIV + 1
  640     CONTINUE
  650   CONTINUE
C END OF MAIN ELIMINATION LOOP.
C
  660   IF (NPIV.NE.0) NBLK = NBLK + 1
        IOLDPS = IWPOS
        IWPOS = IWPOS + NFRONT + 2
        IF (NPIV.EQ.0) GO TO 690
        IF (NPIV.GT.1) GO TO 680
        IW(IOLDPS) = -IW(IOLDPS)
        DO 670 K = 1,NFRONT
          J1 = IOLDPS + K
          IW(J1) = IW(J1+1)
  670   CONTINUE
        IWPOS = IWPOS - 1
        GO TO 690

  680   IW(IOLDPS+1) = NPIV
C COPY REMAINDER OF ELEMENT TO TOP OF STACK
  690   LIELL = NFRONT - NPIV
        IF (LIELL.EQ.0 .OR. IASS.EQ.NSTEPS) GO TO 750
        IF (IWPOS+LIELL.LT.ISTK) GO TO 700
        CALL MA27PD(A,IW,ISTK,ISTK2,IINPUT,2,NCMPBR,NCMPBI)
  700   ISTK = ISTK - LIELL - 1
        IW(ISTK) = LIELL
        J1 = ISTK
        KK = IWPOS - LIELL - 1
C THE FOLLOWING SPECIAL COMMENT FORCES VECTORIZATION ON THE CRAY-1.
CDIR$ IVDEP
        DO 710 K = 1,LIELL
          J1 = J1 + 1
          KK = KK + 1
          IW(J1) = IW(KK)