Newer
Older
'''
Created on 01/08/2016
@author: MMPE
'''
from wetb.hawc2.pc_file import PCFile
from wetb.hawc2.ae_file import AEFile
from wetb.hawc2.htc_file import HTCFile
import os
import numpy as np
from wetb.hawc2.st_file import StFile
class MainBody():
def __init__(self, htc_filename, modelpath, body_name):
self.htcfile = htcfile = HTCFile(htc_filename, modelpath)
s = htcfile.new_htc_structure
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
main_bodies = {s[k].name[0]:s[k] for k in s.keys() if s[k].name_ == "main_body"}
self.main_body = main_bodies[body_name]
self.stFile = StFile(os.path.join(htcfile.modelpath, self.main_body.timoschenko_input.filename[0]))
self.c2def = np.array([v.values[1:5] for v in self.main_body.c2_def if v.name_ == "sec"])
self.concentrated_mass = [cm.values for cm in self.main_body if cm.name_.startswith('concentrated_mass')]
def plot_xz_geometry(self, plt=None):
if plt is None:
import matplotlib.pyplot as plt
plt.figure()
plt.xlabel("z")
plt.ylabel("x")
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(self.c2def[:, 2], self.c2def[:, 0],'.-', label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.stFile.x_e(z), label='Elastic center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.stFile.x_cg(z), label='Mass center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.stFile.x_sh(z), label='Shear center')
for cm in self.concentrated_mass:
plt.plot(self.c2def[cm[0]-1,2]+cm[3],self.c2def[cm[0]-1,0]+cm[1],'x', label='Concentrated mass')
plt.legend()
def plot_yz_geometry(self, plt=None):
if plt is None:
import matplotlib.pyplot as plt
plt.figure()
plt.xlabel("z")
plt.ylabel("y")
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(self.c2def[:, 2], self.c2def[:, 1], label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.stFile.y_e(z), label='Elastic center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.stFile.y_cg(z), label='Mass center')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.stFile.y_sh(z), label='Shear center')
for cm in self.concentrated_mass:
plt.plot(self.c2def[cm[0]-1,2]+cm[3],self.c2def[cm[0]-1,1]+cm[2],'x', label='Concentrated mass')
plt.legend()
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
class BladeData(object):
def plot_xz_geometry(self, plt):
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]), label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) + self.pcFile.chord(z) / 2, label='Leading edge')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 0]) - self.pcFile.chord(z) / 2, label="Trailing edge")
x, y, z = self.hawc2_splines()
#plt.plot(z, x, label='Hawc2spline')
def plot_yz_geometry(self, plt):
z = np.linspace(self.c2def[0, 2], self.c2def[-1, 2], 100)
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]), label='Center line')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) + self.pcFile.thickness(z) / 100 * self.pcFile.chord(z) / 2, label='Suction side')
plt.plot(z, np.interp(z, self.c2def[:, 2], self.c2def[:, 1]) - self.pcFile.thickness(z) / 100 * self.pcFile.chord(z) / 2, label="Pressure side")
x, y, z = self.hawc2_splines()
#plt.plot(z, y, label='Hawc2spline')
def hawc2_splines(self):
curve_z = np.r_[0, np.cumsum(np.sqrt(np.sum(np.diff(self.c2def[:, :3], 1, 0) ** 2, 1)))]
curve_z_nd = curve_z / curve_z[-1]
def akima(x, y):
n = len(x)
var = np.zeros((n + 3))
z = np.zeros((n))
co = np.zeros((n, 4))
for i in range(n - 1):
var[i + 2] = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
var[n + 1] = 2 * var[n] - var[n - 1]
var[n + 2] = 2 * var[n + 1] - var[n]
var[1] = 2 * var[2] - var[3]
var[0] = 2 * var[1] - var[2]
for i in range(n):
wi1 = abs(var[i + 3] - var[i + 2])
wi = abs(var[i + 1] - var[i])
if (wi1 + wi) == 0:
z[i] = (var[i + 2] + var[i + 1]) / 2
else:
z[i] = (wi1 * var[i + 1] + wi * var[i + 2]) / (wi1 + wi)
for i in range(n - 1):
dx = x[i + 1] - x[i]
a = (z[i + 1] - z[i]) * dx
b = y[i + 1] - y[i] - z[i] * dx
co[i, 0] = y[i]
co[i, 1] = z[i]
co[i, 2] = (3 * var[i + 2] - 2 * z[i] - z[i + 1]) / dx
co[i, 3] = (z[i] + z[i + 1] - 2 * var[i + 2]) / dx ** 2
co[n - 1, 0] = y[n - 1]
co[n - 1, 1] = z[n - 1]
co[n - 1, 2] = 0
co[n - 1, 3] = 0
return co
def coef2spline(s, co):
x, y = [], []
for i, c in enumerate(co.tolist()[:-1]):
p = np.poly1d(c[::-1])
z = np.linspace(0, s[i + 1] - s[i ], 10)
x.extend(s[i] + z)
y.extend(p(z))
return y
x, y, z = [coef2spline(curve_z_nd, akima(curve_z_nd, self.c2def[:, i])) for i in range(3)]
return x, y, z
def __init__(self, htc_filename, modelpath=None, blade_number=1):
self.htcfile = htcfile = HTCFile(htc_filename, modelpath)
blade_name = [link[2] for link in htcfile.aero if link.name_.startswith('link') and link[0]==blade_number][0]
MainBody.__init__(self, htc_filename, modelpath, blade_name)
self.pcFile = PCFile(os.path.join(htcfile.modelpath, htcfile.aero.pc_filename[0]),
os.path.join(htcfile.modelpath, htcfile.aero.ae_filename[0]))
if plt is None:
import matplotlib.pyplot as plt
BladeData.plot_xz_geometry(self, plt=plt)
plt.legend()
if plt is None:
import matplotlib.pyplot as plt
BladeData.plot_yz_geometry(self, plt=plt)