Skip to content
Snippets Groups Projects
windIO.py 82.9 KiB
Newer Older
            # Free wind speed Vdir_hor, gl. coo, of gl. pos  0.00,  0.00, -2.31

            # -----------------------------------------------------------------
            # WATER SURFACE gl. coo, at gl. coo, x,y=   0.00,   0.00
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 2].startswith('Water'):
                units = self.ch_details[ch, 1]

                # but remove the comma
                x = items[-2][:-1]
                y = items[-1]

                # and tag it
                tag = 'watersurface-global-%s-%s' % (x, y)
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = 'global'
                channelinfo['pos'] = (float(x), float(y))
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # WIND SPEED
            # WSP gl. coo.,Vx
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].startswith('WSP gl.'):
                units = self.ch_details[ch, 1]
                direction = self.ch_details[ch, 0].split(',')[1]
                tmp = self.ch_details[ch, 2].split('pos')[1]
                x, y, z = tmp.split(',')
                x, y, z = x.strip(), y.strip(), z.strip()

                # and tag it
                tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = 'global'
                channelinfo['pos'] = (x, y, z)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # WIND SPEED AT BLADE
            # 0: WSP Vx, glco, R= 61.5
            # 2: Wind speed Vx of blade  1 at radius  61.52, global coo.
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0].startswith('WSP V'):
                units = self.ch_details[ch, 1].strip()
                direction = self.ch_details[ch, 0].split(' ')[1].strip()
                blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2]
                radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0]
                coord = self.ch_details[ch, 2].split(',')[1].strip()

                radius = radius.strip()
                blade_nr = blade_nr.strip()

                # and tag it
                rpl = (direction, blade_nr, radius, coord)
                tag = 'wsp-blade-%s-%s-%s-%s' % rpl
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = coord
                channelinfo['direction'] = direction
                channelinfo['blade_nr'] = int(blade_nr)
                channelinfo['radius'] = float(radius)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # FLAP ANGLE
            # 2: Flap angle for blade  3 flap number  1
tlbl's avatar
tlbl committed
            elif self.ch_details[ch, 0][:7] == 'setbeta':
                units = self.ch_details[ch, 1].strip()
                blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()
                blade_nr = blade_nr.split(' ')[0].strip()
tlbl's avatar
tlbl committed
                flap_nr = self.ch_details[ch, 2].split(' ')[-1].strip()

                radius = radius.strip()
                blade_nr = blade_nr.strip()

                # and tag it
                tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
                # save all info in the dict
                channelinfo = {}
                channelinfo['coord'] = coord
                channelinfo['flap_nr'] = int(flap_nr)
                channelinfo['blade_nr'] = int(blade_nr)
                channelinfo['units'] = units
                channelinfo['chi'] = ch

            # -----------------------------------------------------------------
            # ignore all the other cases we don't know how to deal with
            else:
                # if we get here, we don't have support yet for that sensor
                # and hence we can't save it. Continue with next channel
                continue

            # -----------------------------------------------------------------
            # ignore if we have a non unique tag
            if tag in self.ch_dict:
                jj = 1
                while True:
                    tag_new = tag + '_v%i' % jj
                    if tag_new in self.ch_dict:
                        jj += 1
                    else:
                        tag = tag_new
                        break
#                msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
#                logging.warn(msg)
#            else:
            self.ch_dict[tag] = copy.copy(channelinfo)

            # -----------------------------------------------------------------
            # save in for DataFrame format
            cols_ch = set(channelinfo.keys())
            for col in cols_ch:
                df_dict[col].append(channelinfo[col])
            # the remainder columns we have not had yet. Fill in blank
            for col in (self.cols - cols_ch):
                df_dict[col].append('')
            df_dict['unique_ch_name'].append(tag)

        self.ch_df = pd.DataFrame(df_dict)
        self.ch_df.set_index('chi', inplace=True)


    def _ch_dict2df(self):
        """
        Create a DataFrame version of the ch_dict, and the chi columns is
        set as the index
        """
        # identify all the different columns
        cols = set()
        for ch_name, channelinfo in self.ch_dict.items():
            cols.update(set(channelinfo.keys()))

tlbl's avatar
tlbl committed
        df_dict = {col: [] for col in cols}
        df_dict['unique_ch_name'] = []
        for ch_name, channelinfo in self.ch_dict.items():
            cols_ch = set(channelinfo.keys())
            for col in cols_ch:
                df_dict[col].append(channelinfo[col])
            # the remainder columns we have not had yet. Fill in blank
            for col in (cols - cols_ch):
                df_dict[col].append('')
            df_dict['unique_ch_name'].append(ch_name)

        self.ch_df = pd.DataFrame(df_dict)
        self.ch_df.set_index('chi', inplace=True)

    def _data_window(self, nr_rev=None, time=None):
        """
        Based on a time interval, create a proper slice object
        ======================================================

        The window will start at zero and ends with the covered time range
        of the time input.

        Paramters
        ---------

        nr_rev : int, default=None
            NOT IMPLEMENTED YET

        time : list, default=None
            time = [time start, time stop]

        Returns
        -------

        slice_

        window

        zoomtype

        time_range
            time_range = [0, time[1]]

        """

        # -------------------------------------------------
        # determine zome range if necesary
        # -------------------------------------------------
        time_range = None
        if nr_rev:
            raise NotImplementedError
            # input is a number of revolutions, get RPM and sample rate to
            # calculate the required range
            # TODO: automatich detection of RPM channel!
            time_range = nr_rev/(self.rpm_mean/60.)
            # convert to indices instead of seconds
            i_range = int(self.Freq*time_range)
            window = [0, time_range]
            # in case the first datapoint is not at 0 seconds
tlbl's avatar
tlbl committed
            i_zero = int(self.sig[0, 0]*self.Freq)
            slice_ = np.r_[i_zero:i_range+i_zero]

            zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'

        elif time.any():
            time_range = time[1] - time[0]

            i_start = int(time[0]*self.Freq)
            i_end = int(time[1]*self.Freq)
            slice_ = np.r_[i_start:i_end]
            window = [time[0], time[1]]

tlbl's avatar
tlbl committed
            zoomtype = '_zoom_%1.1f-%1.1fsec' % (time[0], time[1])

        return slice_, window, zoomtype, time_range

    # TODO: general signal method, this is not HAWC2 specific, move out
tlbl's avatar
tlbl committed
    def calc_stats(self, sig, i0=0, i1=None):

        stats = {}
        # calculate the statistics values:
tlbl's avatar
tlbl committed
        stats['max'] = sig[i0:i1, :].max(axis=0)
        stats['min'] = sig[i0:i1, :].min(axis=0)
        stats['mean'] = sig[i0:i1, :].mean(axis=0)
        stats['std'] = sig[i0:i1, :].std(axis=0)
        stats['range'] = stats['max'] - stats['min']
tlbl's avatar
tlbl committed
        stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0)
        stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0))
        stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
    def statsdel_df(self, i0=0, i1=None, statchans='all', delchans='all',
                    m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46):
        """Calculate statistics and equivalent loads for the current loaded
        signal.

        Parameters
        ----------

        i0 : int, default=0

        i1 : int, default=None

        channels : list, default='all'
            all channels are selected if set to 'all', otherwise define a list
            using the unique channel defintions.

        neq : int, default=1

        no_bins : int, default=46

        Return
        ------

        statsdel : pd.DataFrame
            Pandas DataFrame with the statistical parameters and the different
            fatigue coefficients as columns, and channels as rows. As index the
            unique channel name is used.

        """

        stats = ['max', 'min', 'mean', 'std', 'range', 'absmax', 'rms', 'int']
        if statchans == 'all':
            statchans = self.ch_df['unique_ch_name'].tolist()
            statchis = self.ch_df['unique_ch_name'].index.values
        else:
            sel = self.ch_df['unique_ch_name']
            statchis = self.ch_df[sel.isin(statchans)].index.values

        if delchans == 'all':
            delchans = self.ch_df['unique_ch_name'].tolist()
            delchis = self.ch_df.index.values
        else:
            sel = self.ch_df['unique_ch_name']
            delchis = self.ch_df[sel.isin(delchans)].index.values

        # delchans has to be a subset of statchans!
        if len(set(delchans) - set(statchans)) > 0:
            raise ValueError('delchans has to be a subset of statchans')

        tmp = np.ndarray((len(statchans), len(stats+m)))
        tmp[:,:] = np.nan
        m_cols = ['m=%i' % m_ for m_ in m]
        statsdel = pd.DataFrame(tmp, columns=stats+m_cols)
        statsdel.index = statchans

        datasel = self.sig[i0:i1,statchis]
        time = self.sig[i0:i1,0]
        statsdel['max'] = datasel.max(axis=0)
        statsdel['min'] = datasel.min(axis=0)
        statsdel['mean'] = datasel.mean(axis=0)
        statsdel['std'] = datasel.std(axis=0)
        statsdel['range'] = statsdel['max'] - statsdel['min']
        statsdel['absmax'] = np.abs(datasel).max(axis=0)
        statsdel['rms'] = np.sqrt(np.mean(datasel*datasel, axis=0))
        statsdel['int'] = integrate.trapz(datasel, x=time, axis=0)
        statsdel['intabs'] = integrate.trapz(np.abs(datasel), x=time, axis=0)

        if neq is None:
            neq = self.sig[-1,0] - self.sig[0,0]

        for chi, chan in zip(delchis, delchans):
            signal = self.sig[i0:i1,chi]
            eq = self.calc_fatigue(signal, no_bins=no_bins, neq=neq, m=m)
            statsdel.loc[chan][m_cols] = eq

        return statsdel

    # TODO: general signal method, this is not HAWC2 specific, move out
    def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
        """
tlbl's avatar
tlbl committed
        Parameters
        ----------

        signal: 1D array
            One dimentional array containing the signal.
        no_bins: int
            Number of bins for the binning of the amplitudes.
        m: list
            Values of the slope of the SN curve.
        neq: int
            Number of equivalent cycles

        Returns
        -------
        eq: list
            Damage equivalent loads for each m value.
tlbl's avatar
tlbl committed
        return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0]

    def blade_deflection(self):
        """
        """

        # select all the y deflection channels
        db = misc.DictDB(self.ch_dict)

tlbl's avatar
tlbl committed
        db.search({'sensortype': 'state pos', 'component': 'z'})
        # sort the keys and save the mean values to an array/list
        chiz, zvals = [], []
        for key in sorted(db.dict_sel.keys()):
tlbl's avatar
tlbl committed
            zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean())
            chiz.append(db.dict_sel[key]['chi'])

tlbl's avatar
tlbl committed
        db.search({'sensortype': 'state pos', 'component': 'y'})
        # sort the keys and save the mean values to an array/list
        chiy, yvals = [], []
        for key in sorted(db.dict_sel.keys()):
tlbl's avatar
tlbl committed
            yvals.append(self.sig[:, db.dict_sel[key]['chi']].mean())
            chiy.append(db.dict_sel[key]['chi'])

        return np.array(zvals), np.array(yvals)

    def save_chan_names(self, fname):
        """Save unique channel names to text file.
        """
        channels = self.ch_df.ch_name.values
        channels.sort()
        np.savetxt(fname, channels, fmt='%-100s')

    def save_channel_info(self, fname):
        """Save all channel info: unique naming + HAWC2 description from *.sel.
        """
        p1 = self.ch_df.copy()
        # but ignore the units column, we already have that
        p2 = pd.DataFrame(self.ch_details,
                            columns=['Description1', 'units', 'Description2'])
        # merge on the index
        tmp = pd.merge(p1, p2, right_index=True, how='outer', left_index=True)
        tmp.to_excel(fname)

        # for a fixed-with text format instead of csv
#        header = ''.join(['%100s' % k for k in tmp.columns])
#        header = '  windspeed' + header
#        np.savetxt(fname, tmp.to_records(), header=header,
#                   fmt='% 01.06e  ')

        return tmp

    def load_chan_names(self, fname):
        dtype = np.dtype('U100')
        return np.genfromtxt(fname, dtype=dtype, delimiter=';').tolist()

    def save_csv(self, fname, fmt='%.18e', delimiter=','):
        """
        Save to csv and use the unified channel names as columns
        """
        map_sorting = {}
        # first, sort on channel index
        for ch_key, ch in self.ch_dict.items():
            map_sorting[ch['chi']] = ch_key

        header = []
        # not all channels might be present...iterate again over map_sorting
        for chi in map_sorting:
            try:
                sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
                header.append(map_sorting[chi] + ' // ' + sensortag)
            except:
                header.append(map_sorting[chi])

        # and save
        print('saving...', end='')
tlbl's avatar
tlbl committed
        np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt,
                   delimiter=delimiter, header=delimiter.join(header))
        print(fname)

    def save_df(self, fname):
        """
        Save the HAWC2 data and sel file in a DataFrame that contains all the
        data, and all the channel information (the one from the sel file
        and the parsed from this function)
        """

        self.sig
        self.ch_details
        self.ch_dict


def ReadOutputAtTime(fname):
    """Distributed blade loading as generated by the HAWC2 output_at_time
    command. From HAWC2 12.3-beta and onwards, there are 7 header columns,
    earlier version only have 3.

    Parameters
    ----------

    fname : str

    header_lnr : int, default=3
        Line number of the header (column names) (1-based counting).
#    data = pd.read_fwf(fname, skiprows=3, header=None)
#    pd.read_table(fname, sep='  ', skiprows=3)
#    data.index.names = cols

    # because the formatting is really weird, we need to sanatize it a bit
    with opent(fname, 'r') as f:
        # read the header from line 3
        for k in range(7):
            line = f.readline()
            if line[0:12].lower().replace('#', '').strip() == 'radius_s':
                header_lnr = k + 1
                break
        header = line.replace('\r', '').replace('\n', '')
        cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]

    data = np.loadtxt(fname, skiprows=header_lnr)
    return pd.DataFrame(data, columns=cols)


def ReadEigenBody(fname, debug=False):
    """
    Read HAWC2 body eigenalysis result file
    =======================================

    Parameters
    ----------

    file_path : str

    file_name : str


    Returns
    -------

    results : DataFrame
        Columns: body, Fd_hz, Fn_hz, log_decr_pct

    """

tlbl's avatar
tlbl committed
    # Body data for body number : 3 with the name :nacelle
    # Results:         fd [Hz]       fn [Hz]       log.decr [%]
    # Mode nr:  1:   1.45388E-21    1.74896E-03    6.28319E+02
    lines = FILE.readlines()
    FILE.close()

tlbl's avatar
tlbl committed
    df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []}
    for i, line in enumerate(lines):
        if debug: print('line nr: %5i' % i)
        # identify for which body we will read the data
        if line[:25] == 'Body data for body number':
            body = line.split(':')[2].rstrip().lstrip()
            # remove any annoying characters
tlbl's avatar
tlbl committed
            body = body.replace('\n', '').replace('\r', '')
            if debug: print('modes for body: %s' % body)
        # identify mode number and read the eigenfrequencies
        elif line[:8] == 'Mode nr:':
tlbl's avatar
tlbl committed
            linelist = line.replace('\n', '').replace('\r', '').split(':')
            # modenr = linelist[1].rstrip().lstrip()
            # text after Mode nr can be empty
            try:
                eigenmodes = linelist[2].rstrip().lstrip().split('   ')
            except IndexError:
                eigenmodes = ['0', '0', '0']

            if debug: print(eigenmodes)
            # in case we have more than 3, remove all the empty ones
            # this can happen when there are NaN values
            if not len(eigenmodes) == 3:
                eigenmodes = linelist[2].rstrip().lstrip().split(' ')
                eigmod = []
                for k in eigenmodes:
                    if len(k) > 1:
                        eigmod.append(k)
tlbl's avatar
tlbl committed
                # eigenmodes = eigmod
            else:
                eigmod = eigenmodes
            # remove any trailing spaces for each element
            for k in range(len(eigmod)):
tlbl's avatar
tlbl committed
                eigmod[k] = float(eigmod[k])  #.lstrip().rstrip()

            df_dict['body'].append(body)
            df_dict['Fd_hz'].append(eigmod[0])
            df_dict['Fn_hz'].append(eigmod[1])
            df_dict['log_decr_pct'].append(eigmod[2])

    return pd.DataFrame(df_dict)


def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
    """
    Read HAWC2 structure eigenalysis result file
    ============================================

    The file looks as follows:
    #0 Version ID : HAWC2MB 11.3
    #1 ___________________________________________________________________
    #2 Structure eigenanalysis output
    #3 ___________________________________________________________________
    #4 Time : 13:46:59
    #5 Date : 28:11.2012
    #6 ___________________________________________________________________
    #7 Results:         fd [Hz]       fn [Hz]       log.decr [%]
    #8 Mode nr:  1:   3.58673E+00    3.58688E+00    5.81231E+00
    #...
    #302  Mode nr:294:   0.00000E+00    6.72419E+09    6.28319E+02

    Parameters
    ----------

    file_path : str

    file_name : str

    debug : boolean, default=False

    max_modes : int
        Stop evaluating the result after max_modes number of modes have been
        identified

    Returns
    -------

    modes_arr : ndarray(3,n)
        An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping
        decrement [%] for n different structural eigenmodes

    """

tlbl's avatar
tlbl committed
    # 0 Version ID : HAWC2MB 11.3
    # 1 ___________________________________________________________________
    # 2 Structure eigenanalysis output
    # 3 ___________________________________________________________________
    # 4 Time : 13:46:59
    # 5 Date : 28:11.2012
    # 6 ___________________________________________________________________
    # 7 Results:         fd [Hz]       fn [Hz]       log.decr [%]
    # 8 Mode nr:  1:   3.58673E+00    3.58688E+00    5.81231E+00
    #   Mode nr:294:   0.00000E+00    6.72419E+09    6.28319E+02
    FILE = opent(os.path.join(file_path, file_name))
    lines = FILE.readlines()
    FILE.close()

    header_lines = 8

    # we now the number of modes by having the number of lines
    nrofmodes = len(lines) - header_lines

tlbl's avatar
tlbl committed
    modes_arr = np.ndarray((3, nrofmodes))

    for i, line in enumerate(lines):
        if i > max_modes:
            # cut off the unused rest
tlbl's avatar
tlbl committed
            modes_arr = modes_arr[:, :i]
            break

        # ignore the header
        if i < header_lines:
            continue

        # split up mode nr from the rest
        parts = line.split(':')
tlbl's avatar
tlbl committed
        # modenr = int(parts[1])
        # get fd, fn and damping, but remove all empty items on the list
tlbl's avatar
tlbl committed
        modes_arr[:, i-header_lines]=misc.remove_items(parts[2].split(' '), '')
class UserWind(object):
    """
    """

    def __init__(self):
        pass

    def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3,
                 nr_vert=20, h_ME=500.0, fname=None, wdir=None):
        """

        Parameters
        ----------

        z_h : float
            Hub height

        r_blade_tip : float
            Blade tip radius

        a_phi : float, default=None
            :math:`a_{\\varphi} \\approx 0.5` parameter for the modified
            Ekman veer distribution. Values vary between -1.2 and 0.5.

        shear_exp : float, default=None

        nr_vert : int, default=3

        nr_hor : int, default=20

        h_ME : float, default=500
            Modified Ekman parameter. Take roughly 500 for off shore sites,
            1000 for on shore sites.

        fname : str, default=None
            When specified, the HAWC2 user defined veer input file will be
            written.

        wdir : float, default=None
            A constant veer angle, or yaw angle. Equivalent to setting the
            wind direction. Angle in degrees.

        Returns
        -------

        None

        """

        x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert,
                                  nr_hor=nr_hor)
        if a_phi is not None:
            phi_rad = self.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
            assert len(phi_rad) == nr_vert
        else:
            nr_vert = len(z)
            phi_rad = np.zeros((nr_vert,))
        # add any yaw error on top of
        if wdir is not None:
            # because wdir cw positive, and phi veer ccw positive
            phi_rad -= (wdir*np.pi/180.0)
        u, v, w, xx, zz = self.decompose_veer(phi_rad, x, z)
        # scale the shear on top of that
        if shear_exp is not None:
            shear = self.shear_powerlaw(zz, z_h, shear_exp)
            uu = u*shear[:,np.newaxis]
            vv = v*shear[:,np.newaxis]
            ww = w*shear[:,np.newaxis]
        # and write to a file
        if fname is not None:
            self.write_user_defined_shear(fname, uu, vv, ww, xx, zz)

    def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20):
        """
        Utility to create the coordinates of the wind field based on hub heigth
        and blade length.
        """
        # take 15% extra space after the blade tip
        z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert)
        # along the horizontal, coordinates with 0 at the rotor center
        x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor)

        return x, z

    def shear_powerlaw(self, z, z_ref, a):
        profile = np.power(z/z_ref, a)
        # when a negative, make sure we return zero and not inf
        profile[np.isinf(profile)] = 0.0
        return profile

    def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
        """
        Modified Ekman veer profile, as defined by Mark C. Kelly in email on
        10 October 2014 15:10 (RE: veer profile)

        .. math::
            \\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
            e^{-\sqrt{z_H/h_{ME}}}
            \\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
            \\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
            - \\frac{z-z_H}{4z_H} \\right)

        where:
        :math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
        and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
        and :math:`\\kappa = 0.41` as the von Karman constant,
        and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.

        For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
        :math:`h_{ME} \\approx 500`

        :math:`a_{\\varphi} \\approx 0.5`

        Parameters
        ----------

        :math:`a_{\\varphi} \\approx 0.5` parameter for the modified
            Ekman veer distribution. Values vary between -1.2 and 0.5.

        returns
        -------

        phi_rad : ndarray
            veer angle in radians

        """

        t1 = np.exp(-math.sqrt(z_h / h_ME))
        t2 = (z - z_h) / math.sqrt(z_h * h_ME)
tlbl's avatar
tlbl committed
        t3 = (1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h))

        return a_phi * t1 * t2 * t3

    def decompose_veer(self, phi_rad, x, z):
        """
        Convert a veer angle into u, v, and w components, ready for the
        HAWC2 user defined veer input file.

        Paramters
        ---------

        phi_rad : ndarray
            veer angle in radians

        method : str, default=linear
            'linear' for a linear veer, 'ekman_mod' for modified ekman method

        Returns
        -------

        u, v, w, v_coord, w_coord

        """

        nr_hor = len(x)
        nr_vert = len(z)
        assert len(phi_rad) == nr_vert

        tan_phi = np.tan(phi_rad)

        # convert veer angles to veer components in v, u. Make sure the
        # normalized wind speed remains 1!
#        u = sympy.Symbol('u')
#        v = sympy.Symbol('v')
#        tan_phi = sympy.Symbol('tan_phi')
#        eq1 = u**2.0 + v**2.0 - 1.0
#        eq2 = (tan_phi*u/v) - 1.0
#        sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True)
#        # proposed solution is:
#        u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi
#        v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))
#        # but that gives the sign switch wrong, simplify/rewrite to:
        u = np.sqrt(1.0/(tan_phi**2 + 1.0))
        v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi
        # verify they are actually the same but the sign:
#        assert np.allclose(np.abs(u), np.abs(u2))
#        assert np.allclose(np.abs(v), np.abs(v2))

tlbl's avatar
tlbl committed
        u_full = u[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
        v_full = v[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
        w_full = np.zeros((nr_vert, nr_hor))

        return u_full, v_full, w_full, x, z

    def load_user_defined_veer(self, fname):
        """
        Load a user defined veer and shear file as used for HAWC2

        Returns
        -------

        u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
        """
            for i, line in enumerate(f.readlines()):
                if line.strip()[0] != '#':
                    nr_v, nr_w = misc.remove_items(line.split('#')[0].split(), '')
                    nr_hor, nr_vert = int(nr_v), int(nr_w)
                    i_header = i
                    break

        # u,v and w components on 2D grid
        tmp = np.genfromtxt(fname, skip_header=i_header+1, comments='#',
                            max_rows=nr_vert*3)
        if not tmp.shape == (nr_vert*3, nr_hor):
            raise AssertionError('user defined shear input file inconsistent')
        v_comp = tmp[:nr_vert,:]
        u_comp = tmp[nr_vert:nr_vert*2,:]
        w_comp = tmp[nr_vert*2:nr_vert*3,:]

        # coordinates of the 2D grid
        tmp = np.genfromtxt(fname, skip_header=3*(nr_vert+1)+2,
                            max_rows=nr_hor+nr_vert)
        if not tmp.shape == (nr_vert+nr_hor,):
            raise AssertionError('user defined shear input file inconsistent')
        v_coord = tmp[:nr_hor]
        w_coord = tmp[nr_hor:]

tlbl's avatar
tlbl committed
        phi_deg = np.arctan(v_comp[:, 0]/u_comp[:, 0])*180.0/np.pi

        return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg

    def write_user_defined_shear(self, fname, u, v, w, v_coord, w_coord,
                                 fmt_uvw='% 08.05f', fmt_coord='% 8.02f'):
        """
        """
        nr_hor = len(v_coord)
        nr_vert = len(w_coord)

        try:
            assert u.shape == v.shape
            assert u.shape == w.shape
            assert u.shape[0] == nr_vert
            assert u.shape[1] == nr_hor
        except AssertionError:
            raise ValueError('u, v, w shapes should be consistent with '
                             'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, '
                             'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert))

        # and create the input file
        with open(fname, 'wb') as fid:
            fid.write(b'# User defined shear file\n')
            fid.write(b'%i %i # nr_hor (v), nr_vert (w)\n' % (nr_hor, nr_vert))
            h1 = b'normalized with U_mean, nr_hor (v) rows, nr_vert (w) columns'
            fid.write(b'# v component, %s\n' % h1)
            np.savetxt(fid, v, fmt=fmt_uvw, delimiter='  ')
            fid.write(b'# u component, %s\n' % h1)
            np.savetxt(fid, u, fmt=fmt_uvw, delimiter='  ')
            fid.write(b'# w component, %s\n' % h1)
            np.savetxt(fid, w, fmt=fmt_uvw, delimiter='  ')
            h2 = b'# v coordinates (along the horizontal, nr_hor, 0 rotor center)'
            fid.write(b'%s\n' % h2)
tlbl's avatar
tlbl committed
            np.savetxt(fid, v_coord.reshape((v_coord.size, 1)), fmt=fmt_coord)
            h3 = b'# w coordinates (zero is at ground level, height, nr_hor)'
            fid.write(b'%s\n' % h3)
tlbl's avatar
tlbl committed
            np.savetxt(fid, w_coord.reshape((w_coord.size, 1)), fmt=fmt_coord)
class WindProfiles(object):
    def logarithmic(self, z, z_ref, r_0):
        return np.log10(z/r_0)/np.log10(z_ref/r_0)

    def powerlaw(self, z, z_ref, a):
        profile = np.power(z/z_ref, a)
        # when a negative, make sure we return zero and not inf
        profile[np.isinf(profile)] = 0.0
        return profile

    def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
        """
        Modified Ekman veer profile, as defined by Mark C. Kelly in email on
        10 October 2014 15:10 (RE: veer profile)

        .. math::
            \\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
            e^{-\sqrt{z_H/h_{ME}}}
            \\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
            \\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
            - \\frac{z-z_H}{4z_H} \\right)

        where:
        :math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
        and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
        and :math:`\\kappa = 0.41` as the von Karman constant,
        and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.

        For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
        :math:`h_{ME} \\approx 500`

        :math:`a_{\\varphi} \\approx 0.5`

        Parameters
        ----------

        :math:`a_{\\varphi} \\approx 0.5` parameter for the modified
            Ekman veer distribution. Values vary between -1.2 and 0.5.

        returns
        -------

        phi_rad : ndarray
            veer angle in radians as function of height

        """

        t1 = np.exp(-math.sqrt(z_h / h_ME))
        t2 = (z - z_h) / math.sqrt(z_h * h_ME)
        t3 = ( 1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h) )

        return a_phi * t1 * t2 * t3


class Turbulence(object):

    def __init__(self):

        pass

    def read_hawc2(self, fpath, shape):
        """
        Read the HAWC2 turbulence format
        """

        fid = open(fpath, 'rb')
        tmp = np.fromfile(fid, 'float32', shape[0]*shape[1]*shape[2])
        turb = np.reshape(tmp, shape)

        return turb

    def read_bladed(self, fpath, basename):

        fid = open(fpath + basename + '.wnd', 'rb')
        R1 = struct.unpack('h', fid.read(2))[0]
        R2 = struct.unpack('h', fid.read(2))[0]
        turb = struct.unpack('i', fid.read(4))[0]
        lat = struct.unpack('f', fid.read(4))[0]
        rough = struct.unpack('f', fid.read(4))[0]
        refh = struct.unpack('f', fid.read(4))[0]
        longti = struct.unpack('f', fid.read(4))[0]
        latti = struct.unpack('f', fid.read(4))[0]
        vertti = struct.unpack('f', fid.read(4))[0]
        dv = struct.unpack('f', fid.read(4))[0]
        dw = struct.unpack('f', fid.read(4))[0]
        du = struct.unpack('f', fid.read(4))[0]
        halfalong = struct.unpack('i', fid.read(4))[0]
        mean_ws = struct.unpack('f', fid.read(4))[0]
        VertLongComp = struct.unpack('f', fid.read(4))[0]
        LatLongComp = struct.unpack('f', fid.read(4))[0]
        LongLongComp = struct.unpack('f', fid.read(4))[0]
        Int = struct.unpack('i', fid.read(4))[0]
        seed = struct.unpack('i', fid.read(4))[0]
        VertGpNum = struct.unpack('i', fid.read(4))[0]
        LatGpNum = struct.unpack('i', fid.read(4))[0]
        VertLatComp = struct.unpack('f', fid.read(4))[0]
        LatLatComp = struct.unpack('f', fid.read(4))[0]
        LongLatComp = struct.unpack('f', fid.read(4))[0]
        VertVertComp = struct.unpack('f', fid.read(4))[0]
        LatVertComp = struct.unpack('f', fid.read(4))[0]
        LongVertComp = struct.unpack('f', fid.read(4))[0]

        points = np.fromfile(fid, 'int16', 2*halfalong*VertGpNum*LatGpNum*3)
        fid.close()
        return points

    def convert2bladed(self, fpath, basename, shape=(4096,32,32)):
        """
        Convert turbulence box to BLADED format
        """

        u = self.read_hawc2(fpath + basename + 'u.bin', shape)
        v = self.read_hawc2(fpath + basename + 'v.bin', shape)
        w = self.read_hawc2(fpath + basename + 'w.bin', shape)

        # mean velocity components at the center of the box
        v1, v2 = (shape[1]/2)-1, shape[1]/2
        w1, w2 = (shape[2]/2)-1, shape[2]/2
tlbl's avatar
tlbl committed
        ucent = (u[:, v1, w1] + u[:, v1, w2] + u[:, v2, w1] + u[:, v2, w2]) / 4.0
        vcent = (v[:, v1, w1] + v[:, v1, w2] + v[:, v2, w1] + v[:, v2, w2]) / 4.0
        wcent = (w[:, v1, w1] + w[:, v1, w2] + w[:, v2, w1] + w[:, v2, w2]) / 4.0

        # FIXME: where is this range 351:7374 coming from?? The original script
        # considered a box of lenght 8192
        umean = np.mean(ucent[351:7374])
        vmean = np.mean(vcent[351:7374])
        wmean = np.mean(wcent[351:7374])

        ustd = np.std(ucent[351:7374])
        vstd = np.std(vcent[351:7374])
        wstd = np.std(wcent[351:7374])

        # gives a slight different outcome, but that is that significant?
#        umean = np.mean(u[351:7374,15:17,15:17])
#        vmean = np.mean(v[351:7374,15:17,15:17])
#        wmean = np.mean(w[351:7374,15:17,15:17])

        # this is wrong since we want the std on the center point
#        ustd = np.std(u[351:7374,15:17,15:17])
#        vstd = np.std(v[351:7374,15:17,15:17])
#        wstd = np.std(w[351:7374,15:17,15:17])