Newer
Older
# Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31
# -----------------------------------------------------------------
# WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00
elif self.ch_details[ch, 2].startswith('Water'):
units = self.ch_details[ch, 1]
# but remove the comma
x = items[-2][:-1]
y = items[-1]
# and tag it
tag = 'watersurface-global-%s-%s' % (x, y)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (float(x), float(y))
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# WIND SPEED
# WSP gl. coo.,Vx
elif self.ch_details[ch, 0].startswith('WSP gl.'):
units = self.ch_details[ch, 1]
direction = self.ch_details[ch, 0].split(',')[1]
tmp = self.ch_details[ch, 2].split('pos')[1]
x, y, z = tmp.split(',')
x, y, z = x.strip(), y.strip(), z.strip()
# and tag it
tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (x, y, z)
channelinfo['units'] = units
channelinfo['chi'] = ch
# WIND SPEED AT BLADE
# 0: WSP Vx, glco, R= 61.5
# 2: Wind speed Vx of blade 1 at radius 61.52, global coo.
elif self.ch_details[ch, 0].startswith('WSP V'):
units = self.ch_details[ch, 1].strip()
direction = self.ch_details[ch, 0].split(' ')[1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2]
radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0]
coord = self.ch_details[ch, 2].split(',')[1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
rpl = (direction, blade_nr, radius, coord)
tag = 'wsp-blade-%s-%s-%s-%s' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['direction'] = direction
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['radius'] = float(radius)
channelinfo['units'] = units
channelinfo['chi'] = ch
# FLAP ANGLE
# 2: Flap angle for blade 3 flap number 1
elif self.ch_details[ch, 0][:7] == 'setbeta':
units = self.ch_details[ch, 1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()
blade_nr = blade_nr.split(' ')[0].strip()
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['flap_nr'] = int(flap_nr)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# ignore all the other cases we don't know how to deal with
else:
# if we get here, we don't have support yet for that sensor
# and hence we can't save it. Continue with next channel
continue
# -----------------------------------------------------------------
# ignore if we have a non unique tag
if tag in self.ch_dict:
jj = 1
while True:
tag_new = tag + '_v%i' % jj
if tag_new in self.ch_dict:
jj += 1
else:
tag = tag_new
break
# msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
# logging.warn(msg)
# else:
self.ch_dict[tag] = copy.copy(channelinfo)
# -----------------------------------------------------------------
# save in for DataFrame format
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (self.cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(tag)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _ch_dict2df(self):
"""
Create a DataFrame version of the ch_dict, and the chi columns is
set as the index
"""
# identify all the different columns
cols = set()
for ch_name, channelinfo in self.ch_dict.items():
cols.update(set(channelinfo.keys()))
df_dict['unique_ch_name'] = []
for ch_name, channelinfo in self.ch_dict.items():
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(ch_name)
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _data_window(self, nr_rev=None, time=None):
"""
Based on a time interval, create a proper slice object
======================================================
The window will start at zero and ends with the covered time range
of the time input.
Paramters
---------
nr_rev : int, default=None
NOT IMPLEMENTED YET
time : list, default=None
time = [time start, time stop]
Returns
-------
slice_
window
zoomtype
time_range
time_range = [0, time[1]]
"""
# -------------------------------------------------
# determine zome range if necesary
# -------------------------------------------------
time_range = None
if nr_rev:
raise NotImplementedError
# input is a number of revolutions, get RPM and sample rate to
# calculate the required range
# TODO: automatich detection of RPM channel!
time_range = nr_rev/(self.rpm_mean/60.)
# convert to indices instead of seconds
i_range = int(self.Freq*time_range)
window = [0, time_range]
# in case the first datapoint is not at 0 seconds
slice_ = np.r_[i_zero:i_range+i_zero]
zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'
elif time.any():
time_range = time[1] - time[0]
i_start = int(time[0]*self.Freq)
i_end = int(time[1]*self.Freq)
slice_ = np.r_[i_start:i_end]
window = [time[0], time[1]]
return slice_, window, zoomtype, time_range
# TODO: general signal method, this is not HAWC2 specific, move out
stats = {}
# calculate the statistics values:
stats['max'] = sig[i0:i1, :].max(axis=0)
stats['min'] = sig[i0:i1, :].min(axis=0)
stats['mean'] = sig[i0:i1, :].mean(axis=0)
stats['std'] = sig[i0:i1, :].std(axis=0)
stats['range'] = stats['max'] - stats['min']
stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0)
stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0))
stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
def statsdel_df(self, i0=0, i1=None, statchans='all', delchans='all',
m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46):
"""Calculate statistics and equivalent loads for the current loaded
signal.
Parameters
----------
i0 : int, default=0
i1 : int, default=None
channels : list, default='all'
all channels are selected if set to 'all', otherwise define a list
using the unique channel defintions.
neq : int, default=1
no_bins : int, default=46
Return
------
statsdel : pd.DataFrame
Pandas DataFrame with the statistical parameters and the different
fatigue coefficients as columns, and channels as rows. As index the
unique channel name is used.
"""
stats = ['max', 'min', 'mean', 'std', 'range', 'absmax', 'rms', 'int']
if statchans == 'all':
statchans = self.ch_df['unique_ch_name'].tolist()
statchis = self.ch_df['unique_ch_name'].index.values
else:
sel = self.ch_df['unique_ch_name']
statchis = self.ch_df[sel.isin(statchans)].index.values
if delchans == 'all':
delchans = self.ch_df['unique_ch_name'].tolist()
delchis = self.ch_df.index.values
else:
sel = self.ch_df['unique_ch_name']
delchis = self.ch_df[sel.isin(delchans)].index.values
# delchans has to be a subset of statchans!
if len(set(delchans) - set(statchans)) > 0:
raise ValueError('delchans has to be a subset of statchans')
tmp = np.ndarray((len(statchans), len(stats+m)))
tmp[:,:] = np.nan
m_cols = ['m=%i' % m_ for m_ in m]
statsdel = pd.DataFrame(tmp, columns=stats+m_cols)
statsdel.index = statchans
datasel = self.sig[i0:i1,statchis]
time = self.sig[i0:i1,0]
statsdel['max'] = datasel.max(axis=0)
statsdel['min'] = datasel.min(axis=0)
statsdel['mean'] = datasel.mean(axis=0)
statsdel['std'] = datasel.std(axis=0)
statsdel['range'] = statsdel['max'] - statsdel['min']
statsdel['absmax'] = np.abs(datasel).max(axis=0)
statsdel['rms'] = np.sqrt(np.mean(datasel*datasel, axis=0))
statsdel['int'] = integrate.trapz(datasel, x=time, axis=0)
statsdel['intabs'] = integrate.trapz(np.abs(datasel), x=time, axis=0)
if neq is None:
neq = self.sig[-1,0] - self.sig[0,0]
for chi, chan in zip(delchis, delchans):
signal = self.sig[i0:i1,chi]
eq = self.calc_fatigue(signal, no_bins=no_bins, neq=neq, m=m)
statsdel.loc[chan][m_cols] = eq
return statsdel
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
"""
Parameters
----------
signal: 1D array
One dimentional array containing the signal.
no_bins: int
Number of bins for the binning of the amplitudes.
m: list
Values of the slope of the SN curve.
neq: int
Number of equivalent cycles
Returns
-------
eq: list
Damage equivalent loads for each m value.
return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0]
def blade_deflection(self):
"""
"""
# select all the y deflection channels
db = misc.DictDB(self.ch_dict)
db.search({'sensortype': 'state pos', 'component': 'z'})
# sort the keys and save the mean values to an array/list
chiz, zvals = [], []
for key in sorted(db.dict_sel.keys()):
zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean())
chiz.append(db.dict_sel[key]['chi'])
# sort the keys and save the mean values to an array/list
chiy, yvals = [], []
for key in sorted(db.dict_sel.keys()):
yvals.append(self.sig[:, db.dict_sel[key]['chi']].mean())
chiy.append(db.dict_sel[key]['chi'])
return np.array(zvals), np.array(yvals)

David Verelst
committed
def save_chan_names(self, fname):
"""Save unique channel names to text file.
"""
channels = self.ch_df.ch_name.values
channels.sort()
np.savetxt(fname, channels, fmt='%-100s')
def save_channel_info(self, fname):
"""Save all channel info: unique naming + HAWC2 description from *.sel.
"""
p1 = self.ch_df.copy()
# but ignore the units column, we already have that
p2 = pd.DataFrame(self.ch_details,
columns=['Description1', 'units', 'Description2'])
# merge on the index
tmp = pd.merge(p1, p2, right_index=True, how='outer', left_index=True)
tmp.to_excel(fname)
# for a fixed-with text format instead of csv
# header = ''.join(['%100s' % k for k in tmp.columns])
# header = ' windspeed' + header
# np.savetxt(fname, tmp.to_records(), header=header,
# fmt='% 01.06e ')
return tmp

David Verelst
committed
def load_chan_names(self, fname):
dtype = np.dtype('U100')
return np.genfromtxt(fname, dtype=dtype, delimiter=';').tolist()
def save_csv(self, fname, fmt='%.18e', delimiter=','):
"""
Save to csv and use the unified channel names as columns
"""
map_sorting = {}
# first, sort on channel index
for ch_key, ch in self.ch_dict.items():
map_sorting[ch['chi']] = ch_key
header = []
# not all channels might be present...iterate again over map_sorting
for chi in map_sorting:
try:
sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
header.append(map_sorting[chi] + ' // ' + sensortag)
except:
header.append(map_sorting[chi])
# and save
print('saving...', end='')
np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt,
delimiter=delimiter, header=delimiter.join(header))
print(fname)
def save_df(self, fname):
"""
Save the HAWC2 data and sel file in a DataFrame that contains all the
data, and all the channel information (the one from the sel file
and the parsed from this function)
"""
self.sig
self.ch_details
self.ch_dict
def ReadOutputAtTime(fname):
"""Distributed blade loading as generated by the HAWC2 output_at_time
command. From HAWC2 12.3-beta and onwards, there are 7 header columns,
earlier version only have 3.
Parameters
----------
fname : str
header_lnr : int, default=3
Line number of the header (column names) (1-based counting).
# data = pd.read_fwf(fname, skiprows=3, header=None)
# pd.read_table(fname, sep=' ', skiprows=3)
# data.index.names = cols
# because the formatting is really weird, we need to sanatize it a bit
with opent(fname, 'r') as f:
# read the header from line 3
for k in range(7):
line = f.readline()
if line[0:12].lower().replace('#', '').strip() == 'radius_s':
header_lnr = k + 1
break
header = line.replace('\r', '').replace('\n', '')
cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]
data = np.loadtxt(fname, skiprows=header_lnr)
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
return pd.DataFrame(data, columns=cols)
def ReadEigenBody(fname, debug=False):
"""
Read HAWC2 body eigenalysis result file
=======================================
Parameters
----------
file_path : str
file_name : str
Returns
-------
results : DataFrame
Columns: body, Fd_hz, Fn_hz, log_decr_pct
"""
# Body data for body number : 3 with the name :nacelle
# Results: fd [Hz] fn [Hz] log.decr [%]
# Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02
FILE = opent(fname)
lines = FILE.readlines()
FILE.close()
df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []}
for i, line in enumerate(lines):
if debug: print('line nr: %5i' % i)
# identify for which body we will read the data
if line[:25] == 'Body data for body number':
body = line.split(':')[2].rstrip().lstrip()
# remove any annoying characters
if debug: print('modes for body: %s' % body)
# identify mode number and read the eigenfrequencies
elif line[:8] == 'Mode nr:':
linelist = line.replace('\n', '').replace('\r', '').split(':')
# modenr = linelist[1].rstrip().lstrip()
# text after Mode nr can be empty
try:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
except IndexError:
eigenmodes = ['0', '0', '0']
if debug: print(eigenmodes)
# in case we have more than 3, remove all the empty ones
# this can happen when there are NaN values
if not len(eigenmodes) == 3:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
eigmod = []
for k in eigenmodes:
if len(k) > 1:
eigmod.append(k)
else:
eigmod = eigenmodes
# remove any trailing spaces for each element
for k in range(len(eigmod)):
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
df_dict['body'].append(body)
df_dict['Fd_hz'].append(eigmod[0])
df_dict['Fn_hz'].append(eigmod[1])
df_dict['log_decr_pct'].append(eigmod[2])
return pd.DataFrame(df_dict)
def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
"""
Read HAWC2 structure eigenalysis result file
============================================
The file looks as follows:
#0 Version ID : HAWC2MB 11.3
#1 ___________________________________________________________________
#2 Structure eigenanalysis output
#3 ___________________________________________________________________
#4 Time : 13:46:59
#5 Date : 28:11.2012
#6 ___________________________________________________________________
#7 Results: fd [Hz] fn [Hz] log.decr [%]
#8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
#...
#302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
Parameters
----------
file_path : str
file_name : str
debug : boolean, default=False
max_modes : int
Stop evaluating the result after max_modes number of modes have been
identified
Returns
-------
modes_arr : ndarray(3,n)
An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping
decrement [%] for n different structural eigenmodes
"""
# 0 Version ID : HAWC2MB 11.3
# 1 ___________________________________________________________________
# 2 Structure eigenanalysis output
# 3 ___________________________________________________________________
# 4 Time : 13:46:59
# 5 Date : 28:11.2012
# 6 ___________________________________________________________________
# 7 Results: fd [Hz] fn [Hz] log.decr [%]
# 8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
# Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
FILE = opent(os.path.join(file_path, file_name))
lines = FILE.readlines()
FILE.close()
header_lines = 8
# we now the number of modes by having the number of lines
nrofmodes = len(lines) - header_lines
for i, line in enumerate(lines):
if i > max_modes:
# cut off the unused rest
break
# ignore the header
if i < header_lines:
continue
# split up mode nr from the rest
parts = line.split(':')
# get fd, fn and damping, but remove all empty items on the list
modes_arr[:, i-header_lines]=misc.remove_items(parts[2].split(' '), '')
return modes_arr
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
"""
"""
def __init__(self):
pass
def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3,
nr_vert=20, h_ME=500.0, fname=None, wdir=None):
"""
Parameters
----------
z_h : float
Hub height
r_blade_tip : float
Blade tip radius
a_phi : float, default=None
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
shear_exp : float, default=None
nr_vert : int, default=3
nr_hor : int, default=20
h_ME : float, default=500
Modified Ekman parameter. Take roughly 500 for off shore sites,
1000 for on shore sites.
fname : str, default=None
When specified, the HAWC2 user defined veer input file will be
written.
wdir : float, default=None
A constant veer angle, or yaw angle. Equivalent to setting the
wind direction. Angle in degrees.
Returns
-------
None
"""
x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert,
nr_hor=nr_hor)
if a_phi is not None:
phi_rad = self.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
assert len(phi_rad) == nr_vert
else:
nr_vert = len(z)
phi_rad = np.zeros((nr_vert,))
# add any yaw error on top of
if wdir is not None:
# because wdir cw positive, and phi veer ccw positive
phi_rad -= (wdir*np.pi/180.0)
u, v, w, xx, zz = self.decompose_veer(phi_rad, x, z)
# scale the shear on top of that
if shear_exp is not None:
shear = self.shear_powerlaw(zz, z_h, shear_exp)
uu = u*shear[:,np.newaxis]
vv = v*shear[:,np.newaxis]
ww = w*shear[:,np.newaxis]
# and write to a file
if fname is not None:
self.write_user_defined_shear(fname, uu, vv, ww, xx, zz)
def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20):
"""
Utility to create the coordinates of the wind field based on hub heigth
and blade length.
"""
# take 15% extra space after the blade tip
z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert)
# along the horizontal, coordinates with 0 at the rotor center
x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor)
return x, z
def shear_powerlaw(self, z, z_ref, a):
profile = np.power(z/z_ref, a)
# when a negative, make sure we return zero and not inf
profile[np.isinf(profile)] = 0.0
return profile
def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
"""
Modified Ekman veer profile, as defined by Mark C. Kelly in email on
10 October 2014 15:10 (RE: veer profile)
.. math::
\\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
e^{-\sqrt{z_H/h_{ME}}}
\\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
\\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
- \\frac{z-z_H}{4z_H} \\right)
where:
:math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
and :math:`\\kappa = 0.41` as the von Karman constant,
and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.
For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
:math:`a_{\\varphi} \\approx 0.5`
Parameters
----------
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
returns
-------
phi_rad : ndarray
veer angle in radians
"""
t1 = np.exp(-math.sqrt(z_h / h_ME))
t2 = (z - z_h) / math.sqrt(z_h * h_ME)
t3 = (1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h))
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
return a_phi * t1 * t2 * t3
def decompose_veer(self, phi_rad, x, z):
"""
Convert a veer angle into u, v, and w components, ready for the
HAWC2 user defined veer input file.
Paramters
---------
phi_rad : ndarray
veer angle in radians
method : str, default=linear
'linear' for a linear veer, 'ekman_mod' for modified ekman method
Returns
-------
u, v, w, v_coord, w_coord
"""
nr_hor = len(x)
nr_vert = len(z)
assert len(phi_rad) == nr_vert
tan_phi = np.tan(phi_rad)
# convert veer angles to veer components in v, u. Make sure the
# normalized wind speed remains 1!
# u = sympy.Symbol('u')
# v = sympy.Symbol('v')
# tan_phi = sympy.Symbol('tan_phi')
# eq1 = u**2.0 + v**2.0 - 1.0
# eq2 = (tan_phi*u/v) - 1.0
# sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True)
# # proposed solution is:
# u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi
# v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))
# # but that gives the sign switch wrong, simplify/rewrite to:
u = np.sqrt(1.0/(tan_phi**2 + 1.0))
v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi
# verify they are actually the same but the sign:
# assert np.allclose(np.abs(u), np.abs(u2))
# assert np.allclose(np.abs(v), np.abs(v2))
u_full = u[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
v_full = v[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
w_full = np.zeros((nr_vert, nr_hor))
return u_full, v_full, w_full, x, z
def load_user_defined_veer(self, fname):
"""
Load a user defined veer and shear file as used for HAWC2
Returns
-------
u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
"""
# read the header
with opent(fname) as f:
for i, line in enumerate(f.readlines()):
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
if line.strip()[0] != '#':
nr_v, nr_w = misc.remove_items(line.split('#')[0].split(), '')
nr_hor, nr_vert = int(nr_v), int(nr_w)
i_header = i
break
# u,v and w components on 2D grid
tmp = np.genfromtxt(fname, skip_header=i_header+1, comments='#',
max_rows=nr_vert*3)
if not tmp.shape == (nr_vert*3, nr_hor):
raise AssertionError('user defined shear input file inconsistent')
v_comp = tmp[:nr_vert,:]
u_comp = tmp[nr_vert:nr_vert*2,:]
w_comp = tmp[nr_vert*2:nr_vert*3,:]
# coordinates of the 2D grid
tmp = np.genfromtxt(fname, skip_header=3*(nr_vert+1)+2,
max_rows=nr_hor+nr_vert)
if not tmp.shape == (nr_vert+nr_hor,):
raise AssertionError('user defined shear input file inconsistent')
v_coord = tmp[:nr_hor]
w_coord = tmp[nr_hor:]
phi_deg = np.arctan(v_comp[:, 0]/u_comp[:, 0])*180.0/np.pi
return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
def write_user_defined_shear(self, fname, u, v, w, v_coord, w_coord,
fmt_uvw='% 08.05f', fmt_coord='% 8.02f'):
"""
"""
nr_hor = len(v_coord)
nr_vert = len(w_coord)
try:
assert u.shape == v.shape
assert u.shape == w.shape
assert u.shape[0] == nr_vert
assert u.shape[1] == nr_hor
except AssertionError:
raise ValueError('u, v, w shapes should be consistent with '
'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, '
'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert))
# and create the input file
with open(fname, 'wb') as fid:
fid.write(b'# User defined shear file\n')
fid.write(b'%i %i # nr_hor (v), nr_vert (w)\n' % (nr_hor, nr_vert))
h1 = b'normalized with U_mean, nr_hor (v) rows, nr_vert (w) columns'
fid.write(b'# v component, %s\n' % h1)
np.savetxt(fid, v, fmt=fmt_uvw, delimiter=' ')
fid.write(b'# u component, %s\n' % h1)
np.savetxt(fid, u, fmt=fmt_uvw, delimiter=' ')
fid.write(b'# w component, %s\n' % h1)
np.savetxt(fid, w, fmt=fmt_uvw, delimiter=' ')
h2 = b'# v coordinates (along the horizontal, nr_hor, 0 rotor center)'
fid.write(b'%s\n' % h2)
np.savetxt(fid, v_coord.reshape((v_coord.size, 1)), fmt=fmt_coord)
h3 = b'# w coordinates (zero is at ground level, height, nr_hor)'
fid.write(b'%s\n' % h3)
np.savetxt(fid, w_coord.reshape((w_coord.size, 1)), fmt=fmt_coord)
class WindProfiles(object):
def __init__(self):
pass
def logarithmic(self, z, z_ref, r_0):
return np.log10(z/r_0)/np.log10(z_ref/r_0)
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
def powerlaw(self, z, z_ref, a):
profile = np.power(z/z_ref, a)
# when a negative, make sure we return zero and not inf
profile[np.isinf(profile)] = 0.0
return profile
def veer_ekman_mod(self, z, z_h, h_ME=500.0, a_phi=0.5):
"""
Modified Ekman veer profile, as defined by Mark C. Kelly in email on
10 October 2014 15:10 (RE: veer profile)
.. math::
\\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
e^{-\sqrt{z_H/h_{ME}}}
\\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
\\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
- \\frac{z-z_H}{4z_H} \\right)
where:
:math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
and :math:`\\kappa = 0.41` as the von Karman constant,
and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.
For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
:math:`a_{\\varphi} \\approx 0.5`
Parameters
----------
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
returns
-------
phi_rad : ndarray
veer angle in radians as function of height
"""
t1 = np.exp(-math.sqrt(z_h / h_ME))
t2 = (z - z_h) / math.sqrt(z_h * h_ME)
t3 = ( 1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h) )
return a_phi * t1 * t2 * t3
class Turbulence(object):
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
def __init__(self):
pass
def read_hawc2(self, fpath, shape):
"""
Read the HAWC2 turbulence format
"""
fid = open(fpath, 'rb')
tmp = np.fromfile(fid, 'float32', shape[0]*shape[1]*shape[2])
turb = np.reshape(tmp, shape)
return turb
def read_bladed(self, fpath, basename):
fid = open(fpath + basename + '.wnd', 'rb')
R1 = struct.unpack('h', fid.read(2))[0]
R2 = struct.unpack('h', fid.read(2))[0]
turb = struct.unpack('i', fid.read(4))[0]
lat = struct.unpack('f', fid.read(4))[0]
rough = struct.unpack('f', fid.read(4))[0]
refh = struct.unpack('f', fid.read(4))[0]
longti = struct.unpack('f', fid.read(4))[0]
latti = struct.unpack('f', fid.read(4))[0]
vertti = struct.unpack('f', fid.read(4))[0]
dv = struct.unpack('f', fid.read(4))[0]
dw = struct.unpack('f', fid.read(4))[0]
du = struct.unpack('f', fid.read(4))[0]
halfalong = struct.unpack('i', fid.read(4))[0]
mean_ws = struct.unpack('f', fid.read(4))[0]
VertLongComp = struct.unpack('f', fid.read(4))[0]
LatLongComp = struct.unpack('f', fid.read(4))[0]
LongLongComp = struct.unpack('f', fid.read(4))[0]
Int = struct.unpack('i', fid.read(4))[0]
seed = struct.unpack('i', fid.read(4))[0]
VertGpNum = struct.unpack('i', fid.read(4))[0]
LatGpNum = struct.unpack('i', fid.read(4))[0]
VertLatComp = struct.unpack('f', fid.read(4))[0]
LatLatComp = struct.unpack('f', fid.read(4))[0]
LongLatComp = struct.unpack('f', fid.read(4))[0]
VertVertComp = struct.unpack('f', fid.read(4))[0]
LatVertComp = struct.unpack('f', fid.read(4))[0]
LongVertComp = struct.unpack('f', fid.read(4))[0]
points = np.fromfile(fid, 'int16', 2*halfalong*VertGpNum*LatGpNum*3)
fid.close()
return points
def convert2bladed(self, fpath, basename, shape=(4096,32,32)):
"""
Convert turbulence box to BLADED format
"""
u = self.read_hawc2(fpath + basename + 'u.bin', shape)
v = self.read_hawc2(fpath + basename + 'v.bin', shape)
w = self.read_hawc2(fpath + basename + 'w.bin', shape)
# mean velocity components at the center of the box
v1, v2 = (shape[1]/2)-1, shape[1]/2
w1, w2 = (shape[2]/2)-1, shape[2]/2
ucent = (u[:, v1, w1] + u[:, v1, w2] + u[:, v2, w1] + u[:, v2, w2]) / 4.0
vcent = (v[:, v1, w1] + v[:, v1, w2] + v[:, v2, w1] + v[:, v2, w2]) / 4.0
wcent = (w[:, v1, w1] + w[:, v1, w2] + w[:, v2, w1] + w[:, v2, w2]) / 4.0
# FIXME: where is this range 351:7374 coming from?? The original script
# considered a box of lenght 8192
umean = np.mean(ucent[351:7374])
vmean = np.mean(vcent[351:7374])
wmean = np.mean(wcent[351:7374])
ustd = np.std(ucent[351:7374])
vstd = np.std(vcent[351:7374])
wstd = np.std(wcent[351:7374])
# gives a slight different outcome, but that is that significant?
# umean = np.mean(u[351:7374,15:17,15:17])
# vmean = np.mean(v[351:7374,15:17,15:17])
# wmean = np.mean(w[351:7374,15:17,15:17])
# this is wrong since we want the std on the center point
# ustd = np.std(u[351:7374,15:17,15:17])
# vstd = np.std(v[351:7374,15:17,15:17])
# wstd = np.std(w[351:7374,15:17,15:17])