Skip to content
Snippets Groups Projects
Simulations.py 204 KiB
Newer Older
            tag_dict = self.cases[case]

            # group all values loaded from the tag_dict here, to keep overview
            # the directories to SAVE the results/logs/turb files
            # load all relevant dir settings: the result/logfile/turbulence/zip
            # they are now also available for starting() and ending() parts
            hawc2_exe = tag_dict['[hawc2_exe]']
            self.results_dir = tag_dict['[res_dir]']
            self.eigenfreq_dir = tag_dict['[eigenfreq_dir]']
            self.logs_dir = tag_dict['[log_dir]']
            self.animation_dir = tag_dict['[animation_dir]']
            self.TurbDirName = tag_dict['[turb_dir]']
            self.TurbDb = tag_dict['[turb_db_dir]']
            self.wakeDb = tag_dict['[wake_db_dir]']
            self.meandDb = tag_dict['[meand_db_dir]']
            self.WakeDirName = tag_dict['[wake_dir]']
            self.MeanderDirName = tag_dict['[meander_dir]']
            self.ModelZipFile = tag_dict['[model_zip]']
            self.htc_dir = tag_dict['[htc_dir]']
            self.hydro_dir = tag_dict['[hydro_dir]']
            self.mooring_dir = tag_dict['[mooring_dir]']
            self.model_path = tag_dict['[run_dir]']
            self.turb_base_name = tag_dict['[turb_base_name]']
            self.wake_base_name = tag_dict['[wake_base_name]']
            self.meand_base_name = tag_dict['[meand_base_name]']
            self.pbs_queue_command = tag_dict['[pbs_queue_command]']
            self.walltime = tag_dict['[walltime]']
            self.dyn_walltime = tag_dict['[auto_walltime]']

            # create the pbs_out_dir if necesary
            try:
                path = tag_dict['[run_dir]'] + tag_dict['[pbs_out_dir]']
                if not os.path.exists(path):
                    os.makedirs(path)
                self.pbs_out_dir = tag_dict['[pbs_out_dir]']
            except:
                pass

            # create pbs_in subdirectories if necessary
            try:
                path = tag_dict['[run_dir]'] + tag_dict['[pbs_in_dir]']
                if not os.path.exists(path):
                    os.makedirs(path)
                self.pbs_in_dir = tag_dict['[pbs_in_dir]']
            except:
                pass

            try:
                self.copyback_files = tag_dict['[copyback_files]']
                self.copyback_frename = tag_dict['[copyback_frename]']
            except KeyError:
                pass

            try:
                self.copyto_generic = tag_dict['[copyto_generic]']
                self.copyto_files = tag_dict['[copyto_files]']
            except KeyError:
                pass

            # related to the dynamically setting the walltime
            duration = float(tag_dict['[time_stop]'])
            dt = float(tag_dict['[dt_sim]'])
            self.nr_time_steps.append(duration/dt)
            self.duration.append(float(tag_dict['[duration]']))
            self.t0.append(float(tag_dict['[t0]']))

            if self.verbose:
                print('htc_dir in pbs.create:')
                print(self.htc_dir)
                print(self.model_path)

            # we only start a new case, if we have something that ended before
            # the very first case has to start with starting
            if ended:
                count1 = 1

#                # when jobs depend on other jobs (constant node loading)
#                if self.que_jobdeps:
#                    jobid = self.pref + str(self.jobid_list[i-1])
#                    jobid_dep = self.pref + str(self.jobid_deps[i-1])
#                else:
#                    jobid = self.pref + str(count2)
#                    jobid_dep = None
                if self.short_job_names:
                    jobid = self.pref + str(count2)
                else:
                    jobid = tag_dict['[case_id]']
                if self.pbs_fname_appendix and self.short_job_names:
                    # define the path for the new pbs script
                    pbs_in_fname = '%s_%s.p' % (tag_dict['[case_id]'], jobid)
                else:
                    pbs_in_fname = '%s.p' % (tag_dict['[case_id]'])
                pbs_path = self.model_path + self.pbs_in_dir + pbs_in_fname
                # Start a new pbs script, we only need the tag_dict here
                self.starting(tag_dict, jobid)
                ended = False

            # -----------------------------------------------------------------
            # WRITING THE ACTUAL JOB PARAMETERS

            # output the current scratch directory
            self.pbs += "pwd\n"
            # zip file has been copied to the node before (in start_pbs())
            # unzip now in the node
            self.pbs += "/usr/bin/unzip " + self.ModelZipFile + '\n'
            # create all directories, especially relevant if there are case
            # dependent sub directories that are not present in the ZIP file
            self.pbs += "mkdir -p " + self.htc_dir + '\n'
            self.pbs += "mkdir -p " + self.results_dir + '\n'
            self.pbs += "mkdir -p " + self.logs_dir + '\n'
            self.pbs += "mkdir -p " + self.TurbDirName + '\n'
            if self.WakeDirName:
                self.pbs += "mkdir -p " + self.WakeDirName + '\n'
            if self.MeanderDirName:
                self.pbs += "mkdir -p " + self.MeanderDirName + '\n'
            if self.hydro_dir:
                self.pbs += "mkdir -p " + self.hydro_dir + '\n'
            # create the eigen analysis dir just in case that is necessary
            if self.eigenfreq_dir:
                self.pbs += 'mkdir -p %s \n' % self.eigenfreq_dir

            # and copy the htc file to the node
            self.pbs += "cp -R $PBS_O_WORKDIR/" + self.htc_dir \
                + case +" ./" + self.htc_dir + '\n'

            # if there is a turbulence file data base dir, copy from there
            if self.TurbDb:
                turb_dir_src = os.path.join('$PBS_O_WORKDIR', self.TurbDb)
                turb_dir_src = os.path.join('$PBS_O_WORKDIR', self.TurbDirName)

            # the original behaviour makes assumptions on the turbulence box
            # names: turb_base_name_xxx_u.bin, turb_base_name_xxx_v.bin
            if self.turb_base_name is not None:
                turb_src = os.path.join(turb_dir_src, self.turb_base_name)
                self.pbs += "cp -R %s*.bin %s \n" % (turb_src, self.TurbDirName)
            # more generally, literally define the names of the boxes for u,v,w
            # components
            elif '[turb_fname_u]' in tag_dict:
                turb_u = os.path.join(turb_dir_src, tag_dict['[turb_fname_u]'])
                turb_v = os.path.join(turb_dir_src, tag_dict['[turb_fname_v]'])
                turb_w = os.path.join(turb_dir_src, tag_dict['[turb_fname_w]'])
                self.pbs += "cp %s %s \n" % (turb_u, self.TurbDirName)
                self.pbs += "cp %s %s \n" % (turb_v, self.TurbDirName)
                self.pbs += "cp %s %s \n" % (turb_w, self.TurbDirName)
            # if there is a turbulence file data base dir, copy from there
            if self.wakeDb and self.WakeDirName:
                wake_dir_src = os.path.join('$PBS_O_WORKDIR', self.wakeDb)
            elif self.WakeDirName:
                wake_dir_src = os.path.join('$PBS_O_WORKDIR', self.WakeDirName)
            if self.wake_base_name is not None:
                wake_src = os.path.join(wake_dir_src, self.wake_base_name)
                self.pbs += "cp -R %s*.bin %s \n" % (wake_src, self.WakeDirName)
            # if there is a turbulence file data base dir, copy from there
            if self.meandDb and self.MeanderDirName:
                meand_dir_src = os.path.join('$PBS_O_WORKDIR', self.meandDb)
            elif self.MeanderDirName:
                meand_dir_src = os.path.join('$PBS_O_WORKDIR', self.MeanderDirName)
            if self.meand_base_name is not None:
                meand_src = os.path.join(meand_dir_src, self.meand_base_name)
                self.pbs += "cp -R %s*.bin %s \n" % (meand_src, self.MeanderDirName)

            # copy and rename input files with given versioned name to the
            # required non unique generic version
            for fname, fgen in zip(self.copyto_files, self.copyto_generic):
                self.pbs += "cp -R $PBS_O_WORKDIR/%s ./%s \n" % (fname, fgen)

            # the hawc2 execution commands via wine
            param = (self.wine, hawc2_exe, self.htc_dir+case, self.wine_appendix)
            self.pbs += "%s %s ./%s %s &\n" % param

            #self.pbs += "wine get_mac_adresses" + '\n'
            # self.pbs += "cp -R ./*.mac  $PBS_O_WORKDIR/." + '\n'
            # -----------------------------------------------------------------

            # and we end when the cpu's per node are full
            if int(count1/self.maxcpu) == 1:
                # write the end part of the pbs script
                self.ending(pbs_path)
                ended = True
                # print progress:
                replace = ((i/self.maxcpu), (i_tot/self.maxcpu), self.walltime)
                print('pbs script %3i/%i walltime=%s' % replace)

            count2 += 1
            i += 1
            # the next cpu
            count1 += 1

        # it could be that the last node was not fully loaded. In that case
        # we do not have had a succesfull ending, and we still need to finish
        if not ended:
            # write the end part of the pbs script
            self.ending(pbs_path)
            # progress printing
            replace = ( (i/self.maxcpu), (i_tot/self.maxcpu), self.walltime )
            print('pbs script %3i/%i walltime=%s, partially loaded' % replace)
#            print 'pbs progress, script '+format(i/self.maxcpu,'2.0f')\
#                + '/' + format(i_tot/self.maxcpu, '2.0f') \
#                + ' partially loaded...'

    def starting(self, tag_dict, jobid):
        """
        First part of the pbs script
        """

        # a new clean pbs script!
        self.pbs = ''
        self.pbs += "### Standard Output" + ' \n'

        case_id = tag_dict['[case_id]']

        # PBS job name
        self.pbs += "#PBS -N %s \n" % (jobid)
        self.pbs += "#PBS -o ./" + self.pbs_out_dir + case_id + ".out" + '\n'
        # self.pbs += "#PBS -o ./pbs_out/" + jobid + ".out" + '\n'
        self.pbs += "### Standard Error" + ' \n'
        self.pbs += "#PBS -e ./" + self.pbs_out_dir + case_id + ".err" + '\n'
        # self.pbs += "#PBS -e ./pbs_out/" + jobid + ".err" + '\n'
        self.pbs += '#PBS -W umask=003\n'
        self.pbs += "### Maximum wallclock time format HOURS:MINUTES:SECONDS\n"
#        self.pbs += "#PBS -l walltime=" + self.walltime + '\n'
        self.pbs += "#PBS -l walltime=[walltime]\n"
        if self.qsub == 'time':
            self.pbs += "#PBS -a [start_time]" + '\n'
        elif self.qsub == 'depend':
            # set job dependencies, job_id refers to PBS job_id, which is only
            # assigned to a job at the moment it gets qsubbed into the que
            self.pbs += "[nodeps]PBS -W depend=afterany:[job_id]\n"

#        if self.que_jobdeps:
#            self.pbs += "#PBS -W depend=afterany:%s\n" % jobid_dep
#        else:
#            self.pbs += "#PBS -a [start_time]" + '\n'

        # in case of gorm, we need to make it work correctly. Now each job
        # has a different scratch dir. If we set maxcpu to 12 they all have
        # the same scratch dir. In that case there should be done something
        # differently

        # specify the number of nodes and cpu's per node required
        if self.maxcpu > 1:
            # Number of nodes and cpus per node (ppn)
            lnodes = int(math.ceil(len(self.cases)/float(self.maxcpu)))
            lnodes = 1
            self.pbs += "#PBS -l nodes=%i:ppn=%i\n" % (lnodes, self.maxcpu)
        else:
            self.pbs += "#PBS -l nodes=1:ppn=1\n"
            # Number of nodes and cpus per node (ppn)

        self.pbs += "### Queue name" + '\n'
        # queue names for Thyra are as follows:
        # short walltime queue (shorter than an hour): '#PBS -q xpresq'
        # or otherwise for longer jobs: '#PBS -q workq'
        self.pbs += self.pbs_queue_command + '\n'

        self.pbs += "### Create scratch directory and copy data to it \n"
        # output the current directory
        self.pbs += "cd $PBS_O_WORKDIR" + '\n'
        self.pbs += 'echo "current working dir (pwd):"\n'
        self.pbs += "pwd \n"
        # The batch system on Gorm allows more than one job per node.
        # Because of this the scratch directory name includes both the
        # user name and the job ID, that is /scratch/$USER/$PBS_JOBID
        # if not scratch, make the dir
        if self.node_run_root != '/scratch':
            self.pbs += 'mkdir -p %s/$USER\n' % self.node_run_root
            self.pbs += 'mkdir -p %s/$USER/$PBS_JOBID\n' % self.node_run_root

        # copy the zip files to the scratch dir on the node
        self.pbs += "cp -R ./" + self.ModelZipFile + \
            ' %s/$USER/$PBS_JOBID\n' % (self.node_run_root)

        self.pbs += '\n\n'
        self.pbs += 'echo ""\n'
        self.pbs += 'echo "Execute commands on scratch nodes"\n'
        self.pbs += 'cd %s/$USER/$PBS_JOBID\n' % self.node_run_root
#        # also copy all the HAWC2 exe's to the scratch dir
#        self.pbs += "cp -R %s/* ./\n" % self.wine_dir
#        # custom name hawc2 exe
#        self.h2_new = tag_dict['[hawc2_exe]'] + '-' + jobid + '.exe'
#        self.pbs += "mv %s.exe %s\n" % (tag_dict['[hawc2_exe]'], self.h2_new)

    def ending(self, pbs_path):
        """
        Last part of the pbs script, including command to write script to disc
        COPY BACK: from node to
        """

        self.pbs += "### wait for jobs to finish \n"
        self.pbs += "wait\n"
        self.pbs += 'echo ""\n'
        self.pbs += 'echo "Copy back from scratch directory" \n'
        for i in range(1,self.maxcpu+1,1):

            # navigate to the cpu dir on the node
            # The batch system on Gorm allows more than one job per node.
            # Because of this the scratch directory name includes both the
            # user name and the job ID, that is /scratch/$USER/$PBS_JOBID
            # NB! This is different from Thyra!
            self.pbs += "cd %s/$USER/$PBS_JOBID\n" % self.node_run_root

            # create the log, res etc dirs in case they do not exist
            self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.results_dir + "\n"
            self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.logs_dir + "\n"
            if self.animation_dir:
                self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.animation_dir + "\n"
            if self.copyback_turb and self.TurbDb:
                self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.TurbDb + "\n"
            elif self.copyback_turb:
                self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.TurbDirName + "\n"
            if self.copyback_turb and self.wakeDb:
                self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.wakeDb + "\n"
            elif self.WakeDirName:
                self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.WakeDirName + "\n"
            if self.copyback_turb and self.meandDb:
                self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.meandDb + "\n"
            elif self.MeanderDirName:
                self.pbs += "mkdir -p $PBS_O_WORKDIR/" + self.MeanderDirName + "\n"

            # and copy the results and log files frome the node to the
            # thyra home dir
            self.pbs += "cp -R " + self.results_dir + \
                ". $PBS_O_WORKDIR/" + self.results_dir + ".\n"
            self.pbs += "cp -R " + self.logs_dir + \
                ". $PBS_O_WORKDIR/" + self.logs_dir + ".\n"
            if self.animation_dir:
                self.pbs += "cp -R " + self.animation_dir + \
                    ". $PBS_O_WORKDIR/" + self.animation_dir + ".\n"

            if self.eigenfreq_dir:
                # just in case the eig dir has subdirs for the results, only
                # select the base path and cp -r will take care of the rest
                p1 = self.eigenfreq_dir.split('/')[0]
                self.pbs += "cp -R %s/. $PBS_O_WORKDIR/%s/. \n" % (p1, p1)
                # for eigen analysis with floater, modes are in root
                eig_dir_sys = '%ssystem/' % self.eigenfreq_dir
                self.pbs += 'mkdir -p $PBS_O_WORKDIR/%s \n' % eig_dir_sys
                self.pbs += "cp -R mode* $PBS_O_WORKDIR/%s. \n" % eig_dir_sys

            # only copy the turbulence files back if they do not exist
            # for all *.bin files on the node
            cmd = 'for i in `ls *.bin`; do  if [ -e $PBS_O_WORKDIR/%s$i ]; '
            cmd += 'then echo "$i exists no copyback"; else echo "$i copyback"; '
            cmd += 'cp $i $PBS_O_WORKDIR/%s; fi; done\n'
            # copy back turbulence file?
            # browse to the node turb dir
            self.pbs += '\necho ""\n'
            self.pbs += 'echo "COPY BACK TURB IF APPLICABLE"\n'
            if self.TurbDirName:
                self.pbs += 'cd %s\n' % self.TurbDirName
            if self.copyback_turb and self.TurbDb:
                tmp = (self.TurbDb, self.TurbDb)
                self.pbs += cmd % tmp
            elif self.copyback_turb:
                tmp = (self.TurbDirName, self.TurbDirName)
                self.pbs += cmd % tmp
            if self.TurbDirName:
                # and back to normal model root
                self.pbs += "cd %s/$USER/$PBS_JOBID\n" % self.node_run_root

            if self.WakeDirName:
                self.pbs += 'cd %s\n' % self.WakeDirName
            if self.copyback_turb and self.wakeDb:
                tmp = (self.wakeDb, self.wakeDb)
                self.pbs += cmd % tmp
            elif self.copyback_turb and self.WakeDirName:
                tmp = (self.WakeDirName, self.WakeDirName)
                self.pbs += cmd % tmp
            if self.WakeDirName:
                # and back to normal model root
                self.pbs += "cd %s/$USER/$PBS_JOBID\n" % self.node_run_root

            if self.MeanderDirName:
                self.pbs += 'cd %s\n' % self.MeanderDirName
            if self.copyback_turb and self.meandDb:
                tmp = (self.meandDb, self.meandDb)
                self.pbs += cmd % tmp
            elif self.copyback_turb and self.MeanderDirName:
                tmp = (self.MeanderDirName, self.MeanderDirName)
                self.pbs += cmd % tmp
            if self.MeanderDirName:
                # and back to normal model root
                self.pbs += "cd %s/$USER/$PBS_JOBID\n" % self.node_run_root
            self.pbs += 'echo "END COPY BACK TURB"\n'
            self.pbs += 'echo ""\n\n'

            # copy back any other kind of file specified
            if len(self.copyback_frename) == 0:
                self.copyback_frename = self.copyback_files
            for fname, fnew in zip(self.copyback_files, self.copyback_frename):
                self.pbs += "cp -R %s $PBS_O_WORKDIR/%s \n" % (fname, fnew)

            # check what is left
            self.pbs += 'echo ""\n'
            self.pbs += 'echo "following files are on the node (find .):"\n'
            self.pbs += 'find .\n'

#            # and delete it all (but that is not allowed)
#            self.pbs += 'cd ..\n'
#            self.pbs += 'ls -lah\n'
#            self.pbs += 'echo $PBS_JOBID\n'
#            self.pbs += 'rm -r $PBS_JOBID \n'

            # Delete the batch file at the end. However, is this possible since
            # the batch file is still open at this point????
            # self.pbs += "rm "

        # base walltime on the longest simulation in the batch
        nr_time_steps = max(self.nr_time_steps)
        # TODO: take into acccount the difference between time steps with
        # and without output. This penelaty also depends on the number of
        # channels outputted. So from 0 until t0 we have no penalty,
        # from t0 until t0+duration we have the output penalty.

        # always a predifined lead time to account for startup losses
        tmax = int(nr_time_steps*self.secperiter*self.iterperstep + self.tlead)
        if self.dyn_walltime:
            dt_seconds = datetime.datetime.fromtimestamp(tmax)
            self.walltime = dt_seconds.strftime('%H:%M:%S')
            self.pbs = self.pbs.replace('[walltime]', self.walltime)
        else:
            self.pbs = self.pbs.replace('[walltime]', self.walltime)
        # and reset the nr_time_steps list for the next pbs job file
        self.nr_time_steps = []
        self.t0 = []
        self.duration = []

        # TODO: add logfile checking support directly here. In that way each
        # node will do the logfile checking and statistics calculations right
        # after the simulation. Figure out a way how to merge the data from
        # all the different cases afterwards

        self.pbs += "exit\n"

        if self.verbose:
            print('writing pbs script to path: ' + pbs_path)

        # and write the script to a file:
        write_file(pbs_path, self.pbs, 'w')
        # make the string empty again, for memory
        self.pbs = ''

    def check_results(self, cases):
        """
        Cross-check if all simulations on the list have returned a simulation.
        Combine with ErrorLogs to identify which errors occur where.
        """

        cases_fail = {}

        print('checking if all log and result files are present...', end='')

        # check for each case if we have results and a log file
        for cname, case in cases.items():
            run_dir = case['[run_dir]']
            res_dir = case['[res_dir]']
            log_dir = case['[log_dir]']
            cname_ = cname.replace('.htc', '')
            f_log = os.path.join(run_dir, log_dir, cname_)
            f_res = os.path.join(run_dir, res_dir, cname_)
            if not os.path.exists(f_log + '.log'):
                cases_fail[cname] = copy.copy(cases[cname])
                continue
            try:
                size_sel = os.stat(f_res + '.sel').st_size
                size_dat = os.stat(f_res + '.dat').st_size
            except OSError:
                size_sel = 0
                size_dat = 0
            if size_sel < 5 or size_dat < 5:
                cases_fail[cname] = copy.copy(cases[cname])

        print('done!')

        # length will be zero if there are no failures
        return cases_fail

# TODO: rewrite the error log analysis to something better. Take different
# approach: start from the case and see if the results are present. Than we
# also have the tags_dict available when log-checking a certain case
class ErrorLogs(object):
    """
    Analyse all HAWC2 log files in any given directory
    ==================================================

    Usage:
    logs = ErrorLogs()
    logs.MsgList    : list with the to be checked messages. Add more if required
    logs.ResultFile : name of the result file (default is ErrorLog.csv)
    logs.PathToLogs : specify the directory where the logsfile reside,
                        the ResultFile will be saved in the same directory.
                        It is also possible to give the path of a specific
                        file, the logfile will not be saved in this case. Save
                        when all required messages are analysed with save()
    logs.check() to analyse all the logfiles and create the ResultFile
    logs.save() to save after single file analysis

    logs.MsgListLog : [ [case, line nr, error1, line nr, error2, ....], [], ...]
    holding the error messages, empty if no err msg found
    will survive as long as the logs object exists. Keep in
    mind that when processing many messages with many error types (as defined)
    in MsgList might lead to an increase in memory usage.

    logs.MsgListLog2 : dict(key=case, value=[found_error, exit_correct]
        where found_error and exit_correct are booleans. Found error will just
        indicate whether or not any error message has been found

    All files in the speficied folder (PathToLogs) will be evaluated.
    When Any item present in MsgList occurs, the line number of the first
    occurance will be displayed in the ResultFile.
    If more messages are required, add them to the MsgList
    """

    # TODO: move to the HAWC2 plugin for cases

    def __init__(self, silent=False, cases=None):

        self.silent = silent
        # specify folder which contains the log files
        self.PathToLogs = ''
        self.ResultFile = 'ErrorLog.csv'

        self.cases = cases

        # the total message list log:
        self.MsgListLog = []
        # a smaller version, just indication if there are errors:
        self.MsgListLog2 = dict()

        # specify which message to look for. The number track's the order.
        # this makes it easier to view afterwards in spreadsheet:
        # every error will have its own column

        # error messages that appear during initialisation
        self.err_init = {}
        self.err_init[' *** ERROR *** Error in com'] = len(self.err_init)
        self.err_init[' *** ERROR ***  in command '] = len(self.err_init)
        #  *** WARNING *** A comma "," is written within the command line
        self.err_init[' *** WARNING *** A comma ",'] = len(self.err_init)
        #  *** ERROR *** Not correct number of parameters
        self.err_init[' *** ERROR *** Not correct '] = len(self.err_init)
        #  *** INFO *** End of file reached
        self.err_init[' *** INFO *** End of file r'] = len(self.err_init)
        #  *** ERROR *** No line termination in command line
        self.err_init[' *** ERROR *** No line term'] = len(self.err_init)
        #  *** ERROR *** MATRIX IS NOT DEFINITE
        self.err_init[' *** ERROR *** MATRIX IS NO'] = len(self.err_init)
        #  *** ERROR *** There are unused relative
        self.err_init[' *** ERROR *** There are un'] = len(self.err_init)
        #  *** ERROR *** Error finding body based
        self.err_init[' *** ERROR *** Error findin'] = len(self.err_init)
        #  *** ERROR *** In body actions
        self.err_init[' *** ERROR *** In body acti'] = len(self.err_init)
        #  *** ERROR *** Command unknown
        self.err_init[' *** ERROR *** Command unkn'] = len(self.err_init)
        #  *** ERROR *** ERROR - More bodies than elements on main_body: tower
        self.err_init[' *** ERROR *** ERROR - More'] = len(self.err_init)
        #  *** ERROR *** The program will stop
        self.err_init[' *** ERROR *** The program '] = len(self.err_init)
        #  *** ERROR *** Unknown begin command in topologi.
        self.err_init[' *** ERROR *** Unknown begi'] = len(self.err_init)
        #  *** ERROR *** Not all needed topologi main body commands present
        self.err_init[' *** ERROR *** Not all need'] = len(self.err_init)
        #  *** ERROR ***  opening timoschenko data file
        self.err_init[' *** ERROR ***  opening tim'] = len(self.err_init)
        #  *** ERROR *** Error opening AE data file
        self.err_init[' *** ERROR *** Error openin'] = len(self.err_init)
        #  *** ERROR *** Requested blade _ae set number not found in _ae file
        self.err_init[' *** ERROR *** Requested bl'] = len(self.err_init)
        #  Error opening PC data file
        self.err_init[' Error opening PC data file'] = len(self.err_init)
        #  *** ERROR *** error reading mann turbulence
        self.err_init[' *** ERROR *** error readin'] = len(self.err_init)
        #  *** INFO *** The DLL subroutine
        self.err_init[' *** INFO *** The DLL subro'] = len(self.err_init)
        #  ** WARNING: FROM ESYS ELASTICBAR: No keyword
        self.err_init[' ** WARNING: FROM ESYS ELAS'] = len(self.err_init)
        #  *** ERROR *** DLL ./control/killtrans.dll could not be loaded - error!
        self.err_init[' *** ERROR *** DLL'] = len(self.err_init)
        # *** ERROR *** The DLL subroutine
        self.err_init[' *** ERROR *** The DLL subr'] = len(self.err_init)
        # *** WARNING *** Shear center x location not in elastic center, set to zero
        self.err_init[' *** WARNING *** Shear cent'] = len(self.err_init)
        # Turbulence file ./xyz.bin does not exist
        self.err_init[' Turbulence file '] = len(self.err_init)
        self.err_init[' *** WARNING ***'] = len(self.err_init)
        self.err_init[' *** ERROR ***'] = len(self.err_init)
        self.err_init[' WARNING'] = len(self.err_init)
        self.err_init[' ERROR'] = len(self.err_init)

        # error messages that appear during simulation
        self.err_sim = {}
        #  *** ERROR *** Wind speed requested inside
        self.err_sim[' *** ERROR *** Wind speed r'] = len(self.err_sim)
        #  Maximum iterations exceeded at time step:
        self.err_sim[' Maximum iterations exceede'] = len(self.err_sim)
        #  Solver seems not to converge:
        self.err_sim[' Solver seems not to conver'] = len(self.err_sim)
        #  *** ERROR *** Out of x bounds:
        self.err_sim[' *** ERROR *** Out of x bou'] = len(self.err_sim)
        #  *** ERROR *** Out of limits in user defined shear field - limit value used
        self.err_sim[' *** ERROR *** Out of limit'] = len(self.err_sim)

        # TODO: error message from a non existing channel output/input
        # add more messages if required...

        self.init_cols = len(self.err_init)
        self.sim_cols = len(self.err_sim)

    # TODO: save this not a csv text string but a df_dict, and save as excel
    # and DataFrame!
    def check(self, appendlog=False, save_iter=False):

        # MsgListLog = []

        # load all the files in the given path
        FileList = []
        for files in os.walk(self.PathToLogs):
            FileList.append(files)

        # if the instead of a directory, a file path is given
        # the generated FileList will be empty!
        try:
            NrFiles = len(FileList[0][2])
        # input was a single file:
        except:
            NrFiles = 1
            # simulate one entry on FileList[0][2], give it the file name
            # and save the directory on in self.PathToLogs
            tmp = self.PathToLogs.split(os.path.sep)[-1]
            # cut out the file name from the directory
            self.PathToLogs = self.PathToLogs.replace(tmp, '')
            FileList.append([ [],[],[tmp] ])
            single_file = True
        i=1

        # walk trough the files present in the folder path
        for fname in FileList[0][2]:
            fname_lower = fname.lower()
            # progress indicator
            if NrFiles > 1:
                if not self.silent:
                    print('progress: ' + str(i) + '/' + str(NrFiles))

            # open the current log file
            f_log = os.path.join(self.PathToLogs, str(fname_lower))
            with open(f_log, 'r') as f:
                lines = f.readlines()

            # keep track of the messages allready found in this file
            tempLog = []
            tempLog.append(fname)
            exit_correct, found_error = False, False
            # create empty list item for the different messages and line
            # number. Include one column for non identified messages
            for j in range(self.init_cols + self.sim_cols + 1):
                tempLog.append('')
                tempLog.append('')

            # if there is a cases object, see how many time steps we expect
            if self.cases is not None:
                case = self.cases[fname.replace('.log', '.htc')]
                dt = float(case['[dt_sim]'])
                time_steps = float(case['[time_stop]']) / dt
                iterations = np.ndarray( (time_steps+1,3), dtype=np.float32 )
            else:
                iterations = np.ndarray( (len(lines),3), dtype=np.float32 )
                dt = False
            iterations[:,0:2] = -1
            iterations[:,2] = 0

            # keep track of the time_step number
            time_step, init_block = -1, True
            # check for messages in the current line
            # for speed: delete from message watch list if message is found
            for j, line in enumerate(lines):
                # all id's of errors are 27 characters long
                msg = line[:27]
                # remove the line terminator, this seems to take 2 characters
                # on PY2, but only one in PY3
                line = line.replace('\n', '')

                # keep track of the number of iterations
                if line[:12] == ' Global time':
                    time_step += 1
                    iterations[time_step,0] = float(line[14:40])
                    # for PY2, new line is 2 characters, for PY3 it is one char
                    iterations[time_step,1] = int(line[-6:])
                    # time step is the first time stamp
                    if not dt:
                        dt = float(line[15:40])
                    # no need to look for messages if global time is mentioned
                    continue

                elif line[:20] == ' Starting simulation':
                    init_block = False

                elif init_block:
                    # if string is shorter, we just get a shorter string.
                    # checking presence in dict is faster compared to checking
                    # the length of the string
                    if msg in self.err_init:
                        col_nr = self.err_init[msg]
                        # 2nd item is the column position of the message
                        # line number of the message
                        tempLog[2*col_nr+1] += '%i, ' % j
                        found_error = True

                # find errors that can occur during simulation
                elif msg in self.err_sim:
                    col_nr = self.err_sim[msg] + self.init_cols
                    # 2nd item is the column position of the message
                    # in case stuff already goes wrong on the first time step
                    if time_step == -1:
                        time_step = 0
                    # line number of the message
                    tempLog[2*col_nr+1] += '%i, ' % time_step
                    found_error = True
                    iterations[time_step,2] = 1

                # method of last resort, we have no idea what message
                elif line[:10] == ' *** ERROR' or line[:10]==' ** WARNING':
                    # line number of the message
                    tempLog[-1] = j
                    found_error = True
                    # in case stuff already goes wrong on the first time step
                    if time_step == -1:
                        time_step = 0
                    iterations[time_step,2] = 1

            # simulation and simulation output time
            if self.cases is not None:
                t_stop = float(case['[time_stop]'])
                duration = float(case['[duration]'])
            else:
                t_stop = -1
                duration = -1

            # see if the last line holds the sim time
            if line[:15] ==  ' Elapsed time :':
                exit_correct = True
                tempLog.append( elapsed_time )
            # in some cases, Elapsed time is not given, and the last message
            # might be: " Closing of external type2 DLL"
            elif line[:20] == ' Closing of external':
                exit_correct = True
                elapsed_time = iterations[time_step,0]
                tempLog.append( elapsed_time )
            elif np.allclose(iterations[time_step,0], t_stop):
                exit_correct = True
                elapsed_time = iterations[time_step,0]
                tempLog.append( elapsed_time )
            else:
                elapsed_time = -1
                tempLog.append('')

            # give the last recorded time step
            tempLog.append('%1.11f' % iterations[time_step,0])

            # simulation and simulation output time
            tempLog.append('%1.01f' % t_stop)
            tempLog.append('%1.04f' % (t_stop/elapsed_time))
            tempLog.append('%1.01f' % duration)

            # as last element, add the total number of iterations
            itertotal = np.nansum(iterations[:,1])
            tempLog.append('%i' % itertotal)

            # the delta t used for the simulation
            if dt:
                tempLog.append('%1.7f' % dt)
            else:
                tempLog.append('failed to find dt')

            # number of time steps
            tempLog.append('%i' % len(iterations) )

            # if the simulation didn't end correctly, the elapsed_time doesn't
            # exist. Add the average and maximum nr of iterations per step
            # or, if only the structural and eigen analysis is done, we have 0
            try:
                ratio = float(elapsed_time)/float(itertotal)
                tempLog.append('%1.6f' % ratio)
            except (UnboundLocalError, ZeroDivisionError, ValueError) as e:
                tempLog.append('')
            # when there are no time steps (structural analysis only)
            try:
                tempLog.append('%1.2f' % iterations[:,1].mean() )
                tempLog.append('%1.2f' % iterations[:,1].max() )
            except ValueError:
                tempLog.append('')
                tempLog.append('')

            # save the iterations in the results folder
            if save_iter:
                fiter = fname.replace('.log', '.iter')
                fmt = ['%12.06f', '%4i', '%4i']
                if self.cases is not None:
                    fpath = os.path.join(case['[run_dir]'], case['[iter_dir]'])
                    # in case it has subdirectories
                    for tt in [3,2,1]:
                        tmp = os.path.sep.join(fpath.split(os.path.sep)[:-tt])
                        if not os.path.exists(tmp):
                            os.makedirs(tmp)
                    if not os.path.exists(fpath):
                        os.makedirs(fpath)
                    np.savetxt(fpath + fiter, iterations, fmt=fmt)
                else:
                    np.savetxt(os.path.join(self.PathToLogs, fiter), iterations,
                               fmt=fmt)

            # append the messages found in the current file to the overview log
            self.MsgListLog.append(tempLog)
            self.MsgListLog2[fname] = [found_error, exit_correct]
            i += 1

#            # if no messages are found for the current file, than say so:
#            if len(MsgList2) == len(self.MsgList):
#                tempLog[-1] = 'NO MESSAGES FOUND'

        # if we have only one file, don't save the log file to disk. It is
        # expected that if we analyse many different single files, this will
        # cause a slower script
        if single_file:
            # now we make it available over the object to save and let it grow
            # over many analysis
            # self.MsgListLog = copy.copy(MsgListLog)
            pass
        else:
            self.save(appendlog=appendlog)

    def save(self, appendlog=False):

        # write the results in a file, start with a header
        contents = 'file name;' + 'lnr;msg;'*(self.init_cols)
        contents += 'iter_nr;msg;'*(self.sim_cols)
        contents += 'lnr;msg;'
        # and add headers for elapsed time, nr of iterations, and sec/iteration
        contents += 'Elapsted time;last time step;Simulation time;'
        contents += 'real sim time;Sim output time;'
        contents += 'total iterations;dt;nr time steps;'
        contents += 'seconds/iteration;average iterations/time step;'
        contents += 'maximum iterations/time step;\n'
        for k in self.MsgListLog:
            for n in k:
                contents = contents + str(n) + ';'
            # at the end of each line, new line symbol
            contents = contents + '\n'

        # write csv file to disk, append to facilitate more logfile analysis
        fname = os.path.join(self.PathToLogs, str(self.ResultFile))
        if not self.silent:
            print('Error log analysis saved at:')
            print(fname)
        if appendlog:
            mode = 'a'
        else:
            mode = 'w'
        with open(fname, mode) as f:
            f.write(contents)


class ModelData(object):
    """
    Second generation ModelData function. The HawcPy version is crappy, buggy
    and not mutch of use in the optimisation context.
    """
    class st_headers(object):
        """
        Indices to the respective parameters in the HAWC2 st data file
        """
        r     = 0
        m     = 1
        x_cg  = 2
        y_cg  = 3
        ri_x  = 4
        ri_y  = 5
        x_sh  = 6
        y_sh  = 7
        E     = 8
        G     = 9
        Ixx   = 10
        Iyy   = 11
        I_p   = 12
        k_x   = 13
        k_y   = 14
        A     = 15
        pitch = 16
        x_e   = 17
        y_e   = 18

    def __init__(self, verbose=False, silent=False):
        self.verbose = verbose
        self.silent = silent
        # define the column width for printing
        self.col_width = 13
        # formatting and precision
        self.float_hi = 9999.9999
        self.float_lo =  0.01
        self.prec_float = ' 9.05f'
        self.prec_exp =   ' 8.04e'
        self.prec_loss = 0.01

        #0 1  2    3    4    5    6    7   8 9 10   11
        #r m x_cg y_cg ri_x ri_y x_sh y_sh E G I_x  I_y
        #12    13  14  15  16  17  18
        #I_p/K k_x k_y A pitch x_e y_e
        # 19 cols
        self.st_column_header_list = ['r', 'm', 'x_cg', 'y_cg', 'ri_x', \
            'ri_y', 'x_sh', 'y_sh', 'E', 'G', 'I_x', 'I_y', 'J', 'k_x', \
            'k_y', 'A', 'pitch', 'x_e', 'y_e']

        self.st_column_header_list_latex = ['r','m','x_{cg}','y_{cg}','ri_x',\
            'ri_y', 'x_{sh}','y_{sh}','E', 'G', 'I_x', 'I_y', 'J', 'k_x', \
            'k_y', 'A', 'pitch', 'x_e', 'y_e']

        # make the column header
        self.column_header_line = 19 * self.col_width * '=' + '\n'
        for k in self.st_column_header_list:
            self.column_header_line += k.rjust(self.col_width)
        self.column_header_line += '\n' + (19 * self.col_width * '=') + '\n'

    def fromline(self, line, separator=' '):
        # TODO: move this to the global function space (dav-general-module)
        """
        split a line, but ignore any blank spaces and return a list with only
        the values, not empty places
        """
        # remove all tabs, new lines, etc? (\t, \r, \n)
        line = line.replace('\t',' ').replace('\n','').replace('\r','')
        # trailing and ending spaces
        line = line.strip()
        line = line.split(separator)
        values = []
        for k in range(len(line)):
            if len(line[k]) > 0: #and k == item_nr:
                values.append(line[k])
                # break

        return values

    def load_st(self, file_path, file_name):
        """
        Now a better format: st_dict has following key/value pairs
            'nset'    : total number of sets in the file (int).
                        This should be autocalculated every time when writing
                        a new file.
            '007-000-0' : set number line in one peace
            '007-001-a' : comments for set-subset nr 07-01 (str)
            '007-001-b' : subset nr and number of data points, should be
                        autocalculate every time you generate a file
            '007-001-d' : data for set-subset nr 07-01 (ndarray(n,19))

        NOW WE ONLY CONSIDER SUBSET COMMENTS, SET COMMENTS, HOW ARE THEY
        TREADED NOW??

        st_dict is for easy remaking the same file. We need a different format
        for easy reading the comments as well. For that we have the st_comments
        """

        # TODO: store this in an HDF5 format! This is perfect for that.

        # read all the lines of the file into memory
        self.st_path, self.st_file = file_path, file_name
        FILE = open(os.path.join(file_path, file_name))
        lines = FILE.readlines()
        FILE.close()

        subset = False
        st_dict = dict()
        st_comments = dict()
        for i, line in enumerate(lines):

            # convert line to list space seperated list
            line_list = self.fromline(line)

            # see if the first character is marking something
            if i == 0:
                # it is possible that the NSET line is not defined
                parts = line.split(' ')
                try:
                    for k in range(10):
                        parts.remove(' ') # throws error when can't find
                except ValueError:
                    pass
                # we don't care what is on the nset line, just capture if
                # there are any comments lines
                set_nr = 0
                subset_nr = 0
                st_dict['000-000-0'] = line

            # marks the start of a set
            if line[0] == '#':