Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
#sett = True
# first character is the #, the rest is the number
set_nr = int(line_list[0][1:])
st_dict['%03i-000-0' % set_nr] = line
# and reset subset nr to zero now
subset_nr = 0
subset_nr_track = 0
# and comments only format, back to one string
st_comments['%03i-000-0' % set_nr] = ' '.join(line_list[1:])
# marks the start of a subset
elif line[0] == '$':
subset_nr_track += 1
subset = True
subset_nr = int(line_list[0][1:])
# and comments only format, back to one string
setid = '%03i-%03i-b' % (set_nr, subset_nr)
st_comments[setid] = ' '.join(line_list[2:])
# check if the number read corresponds to tracking
if subset_nr is not subset_nr_track:
msg = 'subset_nr and subset_nr_track do not match'
raise UserWarning(msg)
nr_points = int(line_list[1])
st_dict[setid] = line
# prepare read data points
sub_set_arr = scipy.zeros((nr_points,19), dtype=np.float64)
# keep track of where we are on the data array, initialize
# to 0 for starters
point = 0
# in case we are not in subset mode, we only have comments left
elif not subset:
# FIXME: how are we dealing with set comments now?
# subset comments are coming before the actual subset
# so we account them to one set later than we are now
#if subset_nr > 0 :
key = '%03i-%03i-a' % (set_nr, subset_nr+1)
# in case it is not the first comment line
if key in st_dict: st_dict[key] += line
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
else: st_dict[key] = line
## otherwise we have the set comments
#else:
#key = '%03i-%03i-a' % (set_nr, subset_nr)
## in case it is not the first comment line
#if st_dict.has_key(key): st_dict[key] += line
#else: st_dict[key] = line
# in case we have the data points, make sure there are enough
# data poinst present, raise an error if it doesn't
elif len(line_list)==19 and subset:
# we can store it in the array
sub_set_arr[point,:] = line_list
# on the last entry:
if point == nr_points-1:
# save to the dict:
st_dict['%03i-%03i-d' % (set_nr, subset_nr)]= sub_set_arr
# and indicate we're done subsetting, next we can have
# either set or subset comments
subset = False
point += 1
#else:
#msg='error in st format: don't know where to put current line'
#raise UserWarning, msg
self.st_dict = st_dict
self.st_comments = st_comments
def _format_nr(self, number):
"""
Automatic format the number
prec_loss : float, default=0.01
acceptible precision loss expressed in %
"""
# the formatting of the number
numabs = abs(number)
# just a float precision defined in self.prec_float
if (numabs < self.float_hi and numabs > self.float_lo):
numfor = format(number, self.prec_float)
# if it is zero, just simply print as 0.0
elif number == 0.0:
numfor = format(number, ' 1.1f')
# exponentional, precision defined in self.prec_exp
else:
numfor = format(number, self.prec_exp)
try:
loss = 100.0*abs(1 - (float(numfor)/number))
except ZeroDivisionError:
if abs(float(numfor)) > 0.00000001:
msg = 'precision loss, from %1.10f to %s' \
% (number, numfor.strip())
raise ValueError('precesion loss for new st file')
else:
loss = 0
if loss > self.prec_loss:
msg = 'precision loss, from %1.10f to %s (%f pc)' \
% (number, numfor.strip(), loss)
raise ValueError(msg)
return numfor
def write_st(self, file_path, file_name, print_header=False):
"""
prec_loss : float, default=0.01
acceptible precision loss expressed in %
"""
# TODO: implement all the tests when writing on nset, number of data
# points, subsetnumber sequence etc
content = ''
# sort the key list
keysort = list(self.st_dict.keys())
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
keysort.sort()
for key in keysort:
# in case we are just printing what was recorded before
if not key.endswith('d'):
content += self.st_dict[key]
# else we have an array
else:
# cycle through data points and print them orderly: control
# precision depending on the number, keep spacing constant
# so it is easy to read the textfile
for m in range(self.st_dict[key].shape[0]):
for n in range(self.st_dict[key].shape[1]):
# TODO: check what do we lose here?
# we are coming from a np.float64, as set in the array
# but than it will not work with the format()
number = float(self.st_dict[key][m,n])
numfor = self._format_nr(number)
content += numfor.rjust(self.col_width)
content += '\n'
if print_header:
content += self.column_header_line
# and write file to disk again
FILE = open(file_path + file_name, 'w')
FILE.write(content)
FILE.close()
if not self.silent:
print('st file written:', file_path + file_name)
def write_latex(self, fpath, selection=[]):
"""
Write a table in Latex format based on the data in the st file.
selection : list
[ [setnr, subsetnr, table caption], [setnr, subsetnr, caption],...]
if not specified, all subsets will be plotted
"""
cols_p1 = ['r [m]', 'm [kg/m]', 'm(ri{_x})^2 [kgNm^2]',
'm(ri{_y})^2 [kgNm^2]', 'EI_x [Nm^2]', 'EI_y [Nm^2]',
'EA [N]', 'GJ [\\frac{Nm^2}{rad}]']
cols_p2 = ['r [m]', 'x_cg [m]', 'y_cg [m]', 'x_sh [m]', 'y_sh [m]',
'x_e [m]', 'y_e [m]', 'k_x [-]', 'k_y [-]', 'pitch [deg]']
if len(selection) < 1:
# but now only take the ones that hold data
if key[-1] == 'd':
selection.append([int(key[:3]), int(key[4:7])])
for i,j, caption in selection:
# get the data
try:
# set comment should be the name of the body
set_comment = self.st_comments['%03i-000-0' % (i)]
# subset_comment = self.st_comments['%03i-%03i-b' % (i,j)]
st_arr = self.st_dict['%03i-%03i-d' % (i,j)]
except AttributeError:
msg = 'ModelData object md is not loaded properly'
raise AttributeError(msg)
# build the latex table header
# textable = u"\\begin{table}[b!]\n"
# textable += u"\\begin{center}\n"
textable_p1 = "\\centering\n"
textable_p1 += "\\begin{tabular}"
# configure the column properties
tmp = ['C{2.0 cm}' for k in cols_p1]
tmp = "|".join(tmp)
textable_p1 += '{|' + tmp + '|}'
textable_p1 += '\hline\n'
# add formula mode for the headers
tmp = []
for k in cols_p1:
k1, k2 = k.split(' ')
tmp.append('$%s$ $%s$' % (k1,k2) )
# tmp = [u'$%s$' % k for k in cols_p1]
textable_p1 += ' & '.join(tmp)
textable_p1 += '\\\\ \n'
textable_p1 += '\hline\n'
textable_p2 = "\\centering\n"
textable_p2 += "\\begin{tabular}"
# configure the column properties
tmp = ['C{1.5 cm}' for k in cols_p2]
tmp = "|".join(tmp)
textable_p2 += '{|' + tmp + '|}'
textable_p2 += '\hline\n'
# add formula mode for the headers
tmp = []
for k in cols_p2:
k1, k2 = k.split(' ')
tmp.append('$%s$ $%s$' % (k1,k2) )
# tmp = [u'$%s$ $%s$' % (k1, k2) for k in cols_p2]
# hack: spread the last element over two lines
# tmp[-1] = '$pitch$ $[deg]$'
textable_p2 += ' & '.join(tmp)
textable_p2 += '\\\\ \n'
textable_p2 += '\hline\n'
for row in range(st_arr.shape[0]):
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
r = st_arr[row, self.st_headers.r]
m = st_arr[row,self.st_headers.m]
x_cg = st_arr[row,self.st_headers.x_cg]
y_cg = st_arr[row,self.st_headers.y_cg]
ri_x = st_arr[row,self.st_headers.ri_x]
ri_y = st_arr[row,self.st_headers.ri_y]
x_sh = st_arr[row,self.st_headers.x_sh]
y_sh = st_arr[row,self.st_headers.y_sh]
E = st_arr[row,self.st_headers.E]
G = st_arr[row,self.st_headers.G]
Ixx = st_arr[row,self.st_headers.Ixx]
Iyy = st_arr[row,self.st_headers.Iyy]
I_p = st_arr[row,self.st_headers.I_p]
k_x = st_arr[row,self.st_headers.k_x]
k_y = st_arr[row,self.st_headers.k_y]
A = st_arr[row,self.st_headers.A]
pitch = st_arr[row,self.st_headers.pitch]
x_e = st_arr[row,self.st_headers.x_e]
y_e = st_arr[row,self.st_headers.y_e]
# WARNING: same order as the labels defined in variable "cols"!
p1 = [r, m, m*ri_x*ri_x, m*ri_y*ri_y, E*Ixx, E*Iyy, E*A,I_p*G]
p2 = [r, x_cg, y_cg, x_sh, y_sh, x_e, y_e, k_x, k_y, pitch]
textable_p1 += " & ".join([self._format_nr(k) for k in p1])
textable_p1 += '\\\\ \n'
textable_p2 += " & ".join([self._format_nr(k) for k in p2])
textable_p2 += '\\\\ \n'
# default caption
if caption == '':
caption = 'HAWC2 cross sectional parameters for body: %s' % set_comment
textable_p1 += "\hline\n"
textable_p1 += "\end{tabular}\n"
textable_p1 += "\caption{%s}\n" % caption
# textable += u"\end{center}\n"
# textable += u"\end{table}\n"
fname = '%s-%s-%03i-%03i_p1' % (self.st_file, set_comment, i, j)
fname = fname.replace('.', '') + '.tex'
with open(fpath + fname, 'w') as f:
f.write(textable_p1)
textable_p2 += "\hline\n"
textable_p2 += "\end{tabular}\n"
textable_p2 += "\caption{%s}\n" % caption
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
# textable += u"\end{center}\n"
# textable += u"\end{table}\n"
fname = '%s-%s-%03i-%03i_p2' % (self.st_file, set_comment, i, j)
fname = fname.replace('.', '') + '.tex'
with open(fpath + fname, 'w') as f:
f.write(textable_p2)
class WeibullParameters(object):
def __init__(self):
self.Vin = 4.
self.Vr = 12.
self.Vout = 26.
self.Vref = 50.
self.Vstep = 2.
self.shape_k = 2.
# FIXME: Cases has a memory leek somewhere, this whole thing needs to be
# reconsidered and rely on a DataFrame instead of a dict!
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
"""
Class for the old htc_dict
==========================
Formerly known as htc_dict: a dictionary with on the key a case identifier
(case name) and the value is a dictionary holding all the different tags
and value pairs which define the case
TODO:
define a public API so that plugin's can be exposed in a standarized way
using pre defined variables:
* pandas DataFrame backend instead of a dictionary
* generic, so not bound to HAWC2. Goal: manage a lot of simulations
and their corresponding inputs/outus
* integration with OpenMDAO?
* case id (hash)
* case name (which is typically created with variable_tag_name method)
* results
* inputs
* outputs
a variable tags that has a dictionary mirror for database alike searching
launch, post_launch, prepare_(re)launch should be methods of this or
inheret from Cases
Create a method to add and remove cases from the pool so you can perform
some analysis on them. Maybe make a GUI that present a list with current
cases in the pool and than checkboxes to remove them.
Remove the HAWC2 specific parts to a HAWC2 plugin. The HAWC2 plugin will
inheret from Cases. Proposed class name: HAWC2Cases, XFOILCases
Rename cases to pool? A pool contains several cases, mixing several
sim_id's?
create a unique case ID based on the hash value of all the tag+values?
"""
# TODO: add a method that can reload a certain case_dict, you change
# some parameters for each case (or some) and than launch again
#def __init__(self, post_dir, sim_id, resdir=False):
def __init__(self, *args, **kwargs):
"""
Either load the cases dictionary if post_dir and sim_id is given,
otherwise the input is a cases dictionary
Paramters
---------
cases : dict
The cases dictionary in case there is only one argument
post_dir : str
When using two arguments
sim_id : str or list
When using two arguments
resdir : str, default=False
loadstats : boolean, default=False
rem_failed : boolean, default=True
"""
resdir = kwargs.get('resdir', False)
self.loadstats = kwargs.get('loadstats', False)
self.rem_failed = kwargs.get('rem_failed', True)
self.config = kwargs.get('config', {})
print(self.config)
# determine the input argument scenario
if len(args) == 1:
if type(args[0]).__name__ == 'dict':
self.cases = args[0]
sim_id = False
else:
raise ValueError('One argument input should be a cases dict')
elif len(args) == 2:
self.post_dir = args[0]
sim_id = args[1]
else:
raise ValueError('Only one or two arguments are allowed.')
# if sim_id is a list, than merge all sim_id's of that list
if type(sim_id).__name__ == 'list':
# stats, dynprop and fail are empty dictionaries if they do not
# exist
self.merge_sim_ids(sim_id)
# and define a new sim_id based on all items from the list
self.sim_id = '_'.join(sim_id)
# in case we still need to load the cases dict
elif type(sim_id).__name__ == 'str':
self.sim_id = sim_id
self._get_cases_dict(self.post_dir, sim_id)
# load the statistics if applicable
if self.loadstats:
self.stats_df, self.Leq_df, self.AEP_df = self.load_stats()
# change the results directory if applicable
if resdir:
self.change_results_dir(resdir)
# # try to load failed cases and remove them
# try:
# self.load_failed(sim_id)
# self.remove_failed()
# except IOError:
# pass
#return self.cases
def select(self, search_keyval=False, search_key=False):
"""
Select only a sub set of the cases
Select either search_keyval or search_key. Using both is not supported
yet. Run select twice to achieve the same effect. If both are False,
cases will be emptied!
Parameters
----------
search_keyval : dictionary, default=False
Keys are the column names. If the values match the ones in the
database, the respective row gets selected. Each tag is hence
a unique row identifier
search_key : dict, default=False
The key is the string that should either be inclusive (value TRUE)
or exclusive (value FALSE) in the case key
"""
db = misc.DictDB(self.cases)
if search_keyval:
db.search(search_keyval)
elif search_key:
db.search_key(search_keyval)
else:
db.dict_sel = {}
# and remove all keys that are not in the list
remove = set(self.cases) - set(db.dict_sel)
for k in remove:
self.cases.pop(k)
def launch(self, runmethod='local', verbose=False, copyback_turb=True,
silent=False, check_log=True):
"""
Launch all cases
"""
launch(self.cases, runmethod=runmethod, verbose=verbose, silent=silent,
check_log=check_log, copyback_turb=copyback_turb)
def post_launch(self, save_iter=False):
"""
Post Launching Maintenance
check the logs files and make sure result files are present and
accounted for.
"""
# TODO: integrate global post_launch in here
self.cases_fail = post_launch(self.cases, save_iter=save_iter)
if self.rem_failed:
self.remove_failed()
def load_case(self, case):
try:
iterations = self.load_iterations(case)
except IOError:
iterations = None
res = self.load_result_file(case)
return res, iterations
def load_iterations(self, case):
fp = os.path.join(case['[run_dir]'], case['[iter_dir]'],
case['[case_id]'])
return np.loadtxt(fp + '.iter')
# TODO: HAWC2 result file reading should be moved to Simulations
# and we should also switch to faster HAWC2 reading!
def load_result_file(self, case, _slice=False):
"""
Set the correct HAWC2 channels
Parameters
----------
case : dict
a case dictionary holding all the tags set for this specific
HAWC2 simulation
Returns
-------
res : object
A HawcPy LoadResults instance with attributes such as sig, ch_dict,
and much much more
"""
respath = os.path.join(case['[run_dir]'], case['[res_dir]'])
resfile = case['[case_id]']
self.res = windIO.LoadResults(respath, resfile)
if not _slice:
_slice = np.r_[0:len(self.res.sig)]
self.time = self.res.sig[_slice,0]
self.sig = self.res.sig[_slice,:]
self.case = case
return self.res
def load_struct_results(self, case, max_modes=500, nrmodes=1000):
"""
Load the structural analysis result files
"""
fpath = os.path.join(case['[run_dir]'], case['[eigenfreq_dir]'])
# BEAM OUTPUT
fname = '%s_beam_output.txt' % case['[case_id]']
beam = None
# BODY OUTPUT
fname = '%s_body_output.txt' % case['[case_id]']
body = None
# EIGEN BODY
fname = '%s_eigen_body.txt' % case['[case_id]']
try:
eigen_body, rs2 = windIO.ReadEigenBody(fpath, fname, debug=False,
nrmodes=nrmodes)
except Exception as e:
eigen_body = None
print('failed to load eigen_body')
print(e)
# EIGEN STRUCT
fname = '%s_eigen_struct.txt' % case['[case_id]']
try:
eigen_struct = windIO.ReadEigenStructure(fpath, fname, debug=False,
max_modes=max_modes)
except Exception as e:
eigen_struct = None
print('failed to load eigen_struct')
print(e)
# STRUCT INERTIA
fname = '%s_struct_inertia.txt' % case['[case_id]']
struct_inertia = None
return beam, body, eigen_body, eigen_struct, struct_inertia
def change_results_dir(self, forcedir, post_dir=False):
"""
if the post processing concerns simulations done by thyra/gorm, and
is downloaded locally, change path to results accordingly
"""
for case in self.cases:
self.cases[case]['[run_dir]'] = forcedir
if post_dir:
self.cases[case]['[post_dir]'] = post_dir
#return cases
def force_lower_case_id(self):
tmp_cases = {}
for cname, case in self.cases.items():
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
tmp_cases[cname.lower()] = case.copy()
self.cases = tmp_cases
def _get_cases_dict(self, post_dir, sim_id):
"""
Load the pickled dictionary containing all the cases and their
respective tags.
Returns
-------
cases : Cases object
cases with failures removed. Failed cases are kept in
self.cases_fail
"""
self.cases = load_pickled_file(os.path.join(post_dir, sim_id + '.pkl'))
self.cases_fail = {}
self.force_lower_case_id()
if self.rem_failed:
try:
self.load_failed(sim_id)
# ditch all the failed cases out of the htc_dict otherwise
# we will have fails when reading the results data files
self.remove_failed()
except IOError:
print("couldn't find pickled failed dictionary")
return
def cases2df(self):
"""Convert the cases dict to a DataFrame and save as excel sheet"""
tag_set = []
# maybe some cases have tags that others don't, create a set with
# all the tags that occur
for cname, tags in self.cases.items():
tag_set.extend(list(tags.keys()))
# also add cname as a tag
tag_set.append('cname')
# only unique tags
tag_set = set(tag_set)
# and build the df_dict with all the tags
df_dict = {tag:[] for tag in tag_set}
for cname, tags in self.cases.items():
current_tags = set(tags.keys())
for tag, value in tags.items():
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
df_dict[tag].append(value)
# and the missing ones
for tag in (tag_set - current_tags):
df_dict[tag].append('')
df_dict2 = misc.df_dict_check_datatypes(df_dict)
return pd.DataFrame(df_dict2)
def merge_sim_ids(self, sim_id_list, silent=False):
"""
Load and merge for a list of sim_id's cases, fail, dynprop and stats
====================================================================
For all sim_id's in the sim_id_list the cases, stats, fail and dynprop
dictionaries are loaded. If one of them doesn't exists, an empty
dictionary is returned.
Currently, there is no warning given when a certain case will be
overwritten upon merging.
"""
cases_merged = {}
cases_fail_merged = {}
for ii, sim_id in enumerate(sim_id_list):
# TODO: give a warning if we have double entries or not?
self.sim_id = sim_id
self._get_cases_dict(self.post_dir, sim_id)
cases_fail_merged.update(self.cases_fail)
# and copy to htc_dict_merged. Note that non unique keys will be
# overwritten: each case has to have a unique name!
cases_merged.update(self.cases)
# merge the statistics if applicable
# self.stats_dict[channels] = df
if self.loadstats:
if ii == 0:
self.stats_df, self.Leq_df, self.AEP_df = self.load_stats()
else:
tmp1, tmp2, tmp3 = self.load_stats()
self.stats_df = self.stats_df.append(tmp1)
self.Leq_df = self.Leq_df.append(tmp2)
self.AEP_df = self.AEP_df.append(tmp3)
self.cases = cases_merged
self.cases_fail = cases_fail_merged
def printall(self, scenario, figpath=''):
"""
For all the cases, get the average value of a certain channel
"""
self.figpath = figpath
# plot for each case the dashboard
for k in self.cases:
if scenario == 'blade_deflection':
self.blade_deflection(self.cases[k], self.figpath)
def diff(self, refcase_dict, cases):
"""
See wich tags change over the given cases of the simulation object
"""
# there is only one case allowed in refcase dict
if not len(refcase_dict) == 1:
return ValueError, 'Only one case allowed in refcase dict'
# take an arbritrary case as baseline for comparison
refcase = refcase_dict[list(refcase_dict.keys())[0]]
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
#reftags = sim_dict[refcase]
diffdict = dict()
adddict = dict()
remdict = dict()
print()
print('*'*80)
print('comparing %i cases' % len(cases))
print('*'*80)
print()
# compare each case with the refcase and see if there are any diffs
for case in sorted(cases.keys()):
dd = misc.DictDiff(refcase, cases[case])
diffdict[case] = dd.changed()
adddict[case] = dd.added()
remdict[case] = dd.removed()
print('')
print('='*80)
print(case)
print('='*80)
for tag in sorted(diffdict[case]):
print(tag.rjust(20),':', cases[case][tag])
return diffdict, adddict, remdict
def blade_deflection(self, case, **kwargs):
"""
"""
# read the HAWC2 result file
self.load_result_file(case)
# select all the y deflection channels
db = misc.DictDB(self.res.ch_dict)
db.search({'sensortype' : 'state pos', 'component' : 'z'})
# sort the keys and save the mean values to an array/list
chiz, zvals = [], []
for key in sorted(db.dict_sel.keys()):
zvals.append(-self.sig[:,db.dict_sel[key]['chi']].mean())
chiz.append(db.dict_sel[key]['chi'])
db.search({'sensortype' : 'state pos', 'component' : 'y'})
# sort the keys and save the mean values to an array/list
chiy, yvals = [], []
for key in sorted(db.dict_sel.keys()):
yvals.append(self.sig[:,db.dict_sel[key]['chi']].mean())
chiy.append(db.dict_sel[key]['chi'])
return np.array(zvals), np.array(yvals)
def remove_failed(self):
# don't do anything if there is nothing defined
if self.cases_fail == None:
print('no failed cases to remove')
return
# ditch all the failed cases out of the htc_dict
# otherwise we will have fails when reading the results data files
for k in self.cases_fail:
try:
self.cases_fail[k] = copy.copy(self.cases[k])
del self.cases[k]
print('removed from htc_dict due to error: ' + k)
except KeyError:
print('WARNING: failed case does not occur in cases')
print(' ', k)
def load_failed(self, sim_id):
fname = os.path.join(self.post_dir, sim_id + '_fail.pkl')
FILE = open(fname, 'rb')
self.cases_fail = pickle.load(FILE)
FILE.close()
def load_stats(self, **kwargs):
"""
Load an existing statistcs file
Parameters
----------
post_dir : str, default=self.post_dir
sim_id : str, default=self.sim_id
fpath : str, default=sim_id
leq : bool, default=False
columns : list, default=None
"""
post_dir = kwargs.get('post_dir', self.post_dir)
sim_id = kwargs.get('sim_id', self.sim_id)
fpath = os.path.join(post_dir, sim_id)
Leq_df = kwargs.get('leq', False)
columns = kwargs.get('columns', None)
try:
stats_df = pd.read_hdf(fpath + '_statistics.h5', 'table',
columns=columns)
# FILE = open(post_dir + sim_id + '_statistics.pkl', 'rb')
# stats_dict = pickle.load(FILE)
# FILE.close()
except IOError:
stats_df = None
print('NO STATS FOUND FOR', sim_id)
try:
AEP_df = pd.read_hdf(fpath + '_AEP.h5', 'table')
except IOError:
AEP_df = None
print('NO AEP FOUND FOR', sim_id)
if Leq_df:
try:
Leq_df = pd.read_hdf(fpath + '_Leq.h5', 'table')
except IOError:
Leq_df = None
print('NO Leq FOUND FOR', sim_id)
return stats_df, Leq_df, AEP_df
def statistics(self, new_sim_id=False, silent=False, ch_sel=None,
tags=['[turb_seed]','[windspeed]'], calc_mech_power=False,
save=True, m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46,
ch_fatigue={}, update=False, add_sensor=None,
chs_resultant=[], i0=0, i1=-1, saveinterval=1000,
csv=True, suffix=None, fatigue_cycles=False, A=None,
ch_wind=None, save_new_sigs=False, xlsx=False):
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
"""
Calculate statistics and save them in a pandas dataframe. Save also
every 500 cases the statistics file.
Parameters
----------
ch_sel : list, default=None
If defined, only add defined channels to the output data frame.
The list should contain valid channel names as defined in ch_dict.
tags : list, default=['[turb_seed]','[windspeed]']
Select which tag values from cases should be included in the
dataframes. This will help in selecting and identifying the
different cases.
ch_fatigue : list, default=[]
Valid ch_dict channel names for which the equivalent fatigue load
needs to be calculated. When set to None, ch_fatigue = ch_sel,
and hence all channels will have a fatigue analysis.
fatigue_cycles : Boolean, default=False
If True, the cycle matrix, or sum( n_i*S_i^m ), is calculated. If
set to False, the 1Hz equivalent load is calculated.
chs_resultant
add_sensor
calc_mech_power
saveinterval : int, default=1000
When processing a large number of cases, the statistics file
will be saved every saveinterval-ed case
update : boolean, default=False
Update an existing DataFrame instead of overwriting one. When
the number of cases is larger then saveinterval, the statistics
file will be updated every saveinterval-ed case
suffix : boolean or str, default=False
When True, the statistics data file will be appended with a suffix
that corresponds to the index of the last case added. When a string,
that suffix will be added to the file name (up to but excluding,
much like range()). Set to True when a large number of cases is
being considered in order to avoid excessively large DataFrames.
csv : boolean, default=False
In addition to a h5 file, save the statistics also in csv format.
xlsx : boolean, default=False
In addition to a h5 file, save the statistics also in MS Excel xlsx
format.
Returns
-------
dfs : dict
Dictionary of dataframes, where the key is the channel name of
the output (that was optionally defined in ch_sel), and the value
is the dataframe containing the statistical values for all the
different selected cases.
"""
def add_df_row(df_dict, **kwargs):
"""
add a new channel to the df_dict format of ch_df
"""
for col, value in kwargs.items():
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
df_dict[col].append(value)
for col in (self.res.cols - set(kwargs.keys())):
df_dict[col].append('')
return df_dict
# in case the output changes, remember the original ch_sel
if ch_sel is not None:
ch_sel_init = ch_sel.copy()
else:
ch_sel_init = None
if ch_fatigue is None:
ch_fatigue_init = None
else:
ch_fatigue_init = ch_fatigue
# TODO: should the default tags not be all the tags in the cases dict?
tag_default = ['[case_id]', '[sim_id]']
tag_chan = 'channel'
# merge default with other tags
for tag in tag_default:
if tag not in tags:
tags.append(tag)
# tags can only be unique, when there the same tag appears twice
# it will break the DataFrame creation
if len(tags) is not len(set(tags)):
raise ValueError('tags can only contain unique entries')
# get some basic parameters required to calculate statistics
try:
case = list(self.cases.keys())[0]
except IndexError:
print('no cases to select so no statistics, aborting ...')
return None
post_dir = self.cases[case]['[post_dir]']
if not new_sim_id:
# select the sim_id from a random case
sim_id = self.cases[case]['[sim_id]']
else:
sim_id = new_sim_id
if not silent:
nrcases = len(self.cases)
print('='*79)
print('statistics for %s, nr cases: %i' % (sim_id, nrcases))
df_dict = None
add_stats = True
for ii, (cname, case) in enumerate(self.cases.items()):
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
# build the basic df_dict if not defined
if df_dict is None:
# the dictionary that will be used to create a pandas dataframe
df_dict = { tag:[] for tag in tags }
df_dict[tag_chan] = []
# add more columns that will help with IDing the channel
df_dict['channel_name'] = []
df_dict['channel_units'] = []
df_dict['channel_nr'] = []
df_dict['channel_desc'] = []
add_stats = True
if not silent:
pc = '%6.2f' % (float(ii)*100.0/float(nrcases))
pc += ' %'
print('stats progress: %4i/%i %s' % (ii, nrcases, pc))
# make sure the selected tags exist
if len(tags) != len(set(case) and tags):
raise KeyError(' not all selected tags exist in cases')
self.load_result_file(case)
ch_dict_new = {}
# this is really messy, now we are also in parallal using the
# channel DataFrame structure
ch_df_new = {col:[] for col in self.res.cols}
ch_df_new['ch_name'] = []
# calculate the statistics values
# stats = self.res.calc_stats(self.sig, i0=i0, i1=i1)
i_new_chans = self.sig.shape[1] # self.Nch
sig_size = self.res.N # len(self.sig[i0:i1,0])
new_sigs = np.ndarray((sig_size, 0))
if add_sensor is not None:
chi1 = self.res.ch_dict[add_sensor['ch1_name']]['chi']
chi2 = self.res.ch_dict[add_sensor['ch2_name']]['chi']
name = add_sensor['ch_name_add']
factor = add_sensor['factor']
operator = add_sensor['operator']
p1 = self.sig[:,chi1]
p2 = self.sig[:,chi2]
sig_add = np.ndarray((len(p1), 1))
if operator == '*':
sig_add[:,0] = p1*p2*factor