Newer
Older
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 3 19:53:59 2014
@author: dave
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import dict
from io import open as opent
from builtins import range
from builtins import str
from builtins import int
from future import standard_library
standard_library.install_aliases()
from builtins import object
__author__ = 'David Verelst'
__license__ = 'GPL'
__version__ = '0.5'
import os
import copy
import struct
import math
from time import time
import codecs
from itertools import chain
import scipy as sp
import scipy.integrate as integrate
import pandas as pd
# misc is part of prepost, which is available on the dtu wind gitlab server:
# https://gitlab.windenergy.dtu.dk/dave/prepost
from wetb.prepost import misc
# wind energy python toolbox, available on the dtu wind redmine server:
# http://vind-redmine.win.dtu.dk/projects/pythontoolbox/repository/show/fatigue_tools
class LogFile(object):
"""Check a HAWC2 log file for errors.
"""
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# the total message list log:
self.MsgListLog = []
# a smaller version, just indication if there are errors:
self.MsgListLog2 = dict()
# specify which message to look for. The number track's the order.
# this makes it easier to view afterwards in spreadsheet:
# every error will have its own column
# error messages that appear during initialisation
self.err_init = {}
self.err_init[' *** ERROR *** Error in com'] = len(self.err_init)
self.err_init[' *** ERROR *** in command '] = len(self.err_init)
# *** WARNING *** A comma "," is written within the command line
self.err_init[' *** WARNING *** A comma ",'] = len(self.err_init)
# *** ERROR *** Not correct number of parameters
self.err_init[' *** ERROR *** Not correct '] = len(self.err_init)
# *** INFO *** End of file reached
self.err_init[' *** INFO *** End of file r'] = len(self.err_init)
# *** ERROR *** No line termination in command line
self.err_init[' *** ERROR *** No line term'] = len(self.err_init)
# *** ERROR *** MATRIX IS NOT DEFINITE
self.err_init[' *** ERROR *** MATRIX IS NO'] = len(self.err_init)
# *** ERROR *** There are unused relative
self.err_init[' *** ERROR *** There are un'] = len(self.err_init)
# *** ERROR *** Error finding body based
self.err_init[' *** ERROR *** Error findin'] = len(self.err_init)
# *** ERROR *** In body actions
self.err_init[' *** ERROR *** In body acti'] = len(self.err_init)
# *** ERROR *** Command unknown and ignored
self.err_init[' *** ERROR *** Command unkn'] = len(self.err_init)
# *** ERROR *** ERROR - More bodies than elements on main_body: tower
self.err_init[' *** ERROR *** ERROR - More'] = len(self.err_init)
# *** ERROR *** The program will stop
self.err_init[' *** ERROR *** The program '] = len(self.err_init)
# *** ERROR *** Unknown begin command in topologi.
self.err_init[' *** ERROR *** Unknown begi'] = len(self.err_init)
# *** ERROR *** Not all needed topologi main body commands present
self.err_init[' *** ERROR *** Not all need'] = len(self.err_init)
# *** ERROR *** opening timoschenko data file
self.err_init[' *** ERROR *** opening tim'] = len(self.err_init)
# *** ERROR *** Error opening AE data file
self.err_init[' *** ERROR *** Error openin'] = len(self.err_init)
# *** ERROR *** Requested blade _ae set number not found in _ae file
self.err_init[' *** ERROR *** Requested bl'] = len(self.err_init)
# Error opening PC data file
self.err_init[' Error opening PC data file'] = len(self.err_init)
# *** ERROR *** error reading mann turbulence
self.err_init[' *** ERROR *** error readin'] = len(self.err_init)
# *** INFO *** The DLL subroutine
self.err_init[' *** INFO *** The DLL subro'] = len(self.err_init)
# ** WARNING: FROM ESYS ELASTICBAR: No keyword
self.err_init[' ** WARNING: FROM ESYS ELAS'] = len(self.err_init)
# *** ERROR *** DLL ./control/killtrans.dll could not be loaded - error!
self.err_init[' *** ERROR *** DLL'] = len(self.err_init)
# *** ERROR *** The DLL subroutine
self.err_init[' *** ERROR *** The DLL subr'] = len(self.err_init)
# *** ERROR *** Mann turbulence length scale must be larger than zero!
# *** ERROR *** Mann turbulence alpha eps value must be larger than zero!
# *** ERROR *** Mann turbulence gamma value must be larger than zero!
self.err_init[' *** ERROR *** Mann turbule'] = len(self.err_init)
# *** WARNING *** Shear center x location not in elastic center, set to zero
self.err_init[' *** WARNING *** Shear cent'] = len(self.err_init)
# Turbulence file ./xyz.bin does not exist
self.err_init[' Turbulence file '] = len(self.err_init)
self.err_init[' *** WARNING ***'] = len(self.err_init)
self.err_init[' *** ERROR ***'] = len(self.err_init)
self.err_init[' WARNING'] = len(self.err_init)
self.err_init[' ERROR'] = len(self.err_init)
# error messages that appear during simulation
self.err_sim = {}
# *** ERROR *** Wind speed requested inside
self.err_sim[' *** ERROR *** Wind speed r'] = len(self.err_sim)
# Maximum iterations exceeded at time step:
self.err_sim[' Maximum iterations exceede'] = len(self.err_sim)
# Solver seems not to converge:
self.err_sim[' Solver seems not to conver'] = len(self.err_sim)
# *** ERROR *** Out of x bounds:
self.err_sim[' *** ERROR *** Out of x bou'] = len(self.err_sim)
# *** ERROR *** Out of limits in user defined shear field - limit value used
self.err_sim[' *** ERROR *** Out of limit'] = len(self.err_sim)
# TODO: error message from a non existing channel output/input
# add more messages if required...
self.init_cols = len(self.err_init)
self.sim_cols = len(self.err_sim)
self.header = None
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def readlog(self, fname, case=None, save_iter=False):
"""
"""
# open the current log file
with open(fname, 'r') as f:
lines = f.readlines()
# keep track of the messages allready found in this file
tempLog = []
tempLog.append(fname)
exit_correct, found_error = False, False
subcols_sim = 4
subcols_init = 2
# create empty list item for the different messages and line
# number. Include one column for non identified messages
for j in range(self.init_cols):
# 2 sub-columns per message: nr, msg
for k in range(subcols_init):
tempLog.append('')
for j in range(self.sim_cols):
# 4 sub-columns per message: first, last, nr, msg
for k in range(subcols_sim):
tempLog.append('')
# and two more columns at the end for messages of unknown origin
tempLog.append('')
tempLog.append('')
# if there is a cases object, see how many time steps we expect
if case is not None:
dt = float(case['[dt_sim]'])
time_steps = int(float(case['[time_stop]']) / dt)
iterations = np.ndarray( (time_steps+1,3), dtype=np.float32 )
else:
iterations = np.ndarray( (len(lines),3), dtype=np.float32 )
dt = False
iterations[:,0:2] = -1
iterations[:,2] = 0
# keep track of the time_step number
time_step, init_block = -1, True
# check for messages in the current line
# for speed: delete from message watch list if message is found
for j, line in enumerate(lines):
# all id's of errors are 27 characters long
msg = line[:27]
# remove the line terminator, this seems to take 2 characters
# on PY2, but only one in PY3
line = line.replace('\n', '')
# keep track of the number of iterations
if line[:12] == ' Global time':
time_step += 1
iterations[time_step,0] = float(line[14:40])
# for PY2, new line is 2 characters, for PY3 it is one char
iterations[time_step,1] = int(line[-6:])
# time step is the first time stamp
if not dt:
dt = float(line[15:40])
# no need to look for messages if global time is mentioned
continue
elif line[:4] == ' kfw':
pass
# Global time = 17.7800000000000 Iter = 2
# kfw 0.861664060457402
# nearwake iterations 17
# computed relaxation factor 0.300000000000000
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
elif line[:20] == ' Starting simulation':
init_block = False
elif init_block:
# if string is shorter, we just get a shorter string.
# checking presence in dict is faster compared to checking
# the length of the string
# first, last, nr, msg
if msg in self.err_init:
# icol=0 -> fname
icol = subcols_init*self.err_init[msg] + 1
# 0: number of occurances
if tempLog[icol] == '':
tempLog[icol] = '1'
else:
tempLog[icol] = str(int(tempLog[icol]) + 1)
# 1: the error message itself
tempLog[icol+1] = line
found_error = True
# find errors that can occur during simulation
elif msg in self.err_sim:
icol = subcols_sim*self.err_sim[msg]
icol += subcols_init*self.init_cols + 1
# in case stuff already goes wrong on the first time step
if time_step == -1:
time_step = 0
# 1: time step of first occurance
if tempLog[icol] == '':
tempLog[icol] = '%i' % time_step
# 2: time step of last occurance
tempLog[icol+1] = '%i' % time_step
# 3: number of occurances
if tempLog[icol+2] == '':
tempLog[icol+2] = '1'
else:
tempLog[icol+2] = str(int(tempLog[icol+2]) + 1)
# 4: the error message itself
tempLog[icol+3] = line
found_error = True
iterations[time_step,2] = 1
# method of last resort, we have no idea what message
elif line[:10] == ' *** ERROR' or line[:10]==' ** WARNING':
icol = subcols_sim*self.sim_cols
icol += subcols_init*self.init_cols + 1
# line number of the message
tempLog[icol] = j
# and message
tempLog[icol+1] = line
found_error = True
# in case stuff already goes wrong on the first time step
if time_step == -1:
time_step = 0
iterations[time_step,2] = 1
# simulation and simulation output time
if case is not None:
t_stop = float(case['[time_stop]'])
duration = float(case['[duration]'])
else:
t_stop = -1
duration = -1
# see if the last line holds the sim time
if line[:15] == ' Elapsed time :':
exit_correct = True
elapsed_time = float(line[15:-1])
tempLog.append( elapsed_time )
# in some cases, Elapsed time is not given, and the last message
# might be: " Closing of external type2 DLL"
elif line[:20] == ' Closing of external':
exit_correct = True
elapsed_time = iterations[time_step,0]
tempLog.append( elapsed_time )
elif np.allclose(iterations[time_step,0], t_stop):
exit_correct = True
elapsed_time = iterations[time_step,0]
tempLog.append( elapsed_time )
else:
elapsed_time = -1
tempLog.append('')
# give the last recorded time step
tempLog.append('%1.11f' % iterations[time_step,0])
# simulation and simulation output time
tempLog.append('%1.01f' % t_stop)
tempLog.append('%1.04f' % (t_stop/elapsed_time))
tempLog.append('%1.01f' % duration)
# as last element, add the total number of iterations
itertotal = np.nansum(iterations[:,1])
tempLog.append('%i' % itertotal)
# the delta t used for the simulation
if dt:
tempLog.append('%1.7f' % dt)
else:
tempLog.append('failed to find dt')
# number of time steps
tempLog.append('%i' % len(iterations) )
# if the simulation didn't end correctly, the elapsed_time doesn't
# exist. Add the average and maximum nr of iterations per step
# or, if only the structural and eigen analysis is done, we have 0
try:
ratio = float(elapsed_time)/float(itertotal)
tempLog.append('%1.6f' % ratio)
except (UnboundLocalError, ZeroDivisionError, ValueError) as e:
tempLog.append('')
# when there are no time steps (structural analysis only)
try:
tempLog.append('%1.2f' % iterations[:,1].mean())
tempLog.append('%1.2f' % iterations[:,1].max())
except ValueError:
tempLog.append('')
tempLog.append('')
# save the iterations in the results folder
if save_iter:
fiter = os.path.basename(fname).replace('.log', '.iter')
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
fmt = ['%12.06f', '%4i', '%4i']
if case is not None:
fpath = os.path.join(case['[run_dir]'], case['[iter_dir]'])
# in case it has subdirectories
for tt in [3,2,1]:
tmp = os.path.sep.join(fpath.split(os.path.sep)[:-tt])
if not os.path.exists(tmp):
os.makedirs(tmp)
if not os.path.exists(fpath):
os.makedirs(fpath)
np.savetxt(fpath + fiter, iterations, fmt=fmt)
else:
logpath = os.path.dirname(fname)
np.savetxt(os.path.join(logpath, fiter), iterations, fmt=fmt)
# append the messages found in the current file to the overview log
self.MsgListLog.append(tempLog)
self.MsgListLog2[fname] = [found_error, exit_correct]
def _msglistlog2csv(self, contents):
"""Write LogFile.MsgListLog to a csv file. Use LogFile._header to
create a header.
"""
for k in self.MsgListLog:
for n in k:
contents = contents + str(n) + ';'
# at the end of each line, new line symbol
contents = contents + '\n'
return contents
def csv2df(self, fname):
"""Read a csv log file analysis and convert to a pandas.DataFrame
"""
colnames, min_itemsize, dtypes = self.headers4df()
df = pd.read_csv(fname, header=0, names=colnames, sep=';', )
for col, dtype in dtypes.items():
df[col] = df[col].astype(dtype)
# replace nan with empty for str columns
if dtype == str:
df[col] = df[col].str.replace('nan', '')
return df
def _header(self):
"""Header for log analysis csv file
"""
# write the results in a file, start with a header
contents = 'file name;' + 'nr;msg;'*(self.init_cols)
contents += 'first_tstep;last_tstep;nr;msg;'*(self.sim_cols)
contents += 'lnr;msg;'
# and add headers for elapsed time, nr of iterations, and sec/iteration
contents += 'Elapsted time;last time step;Simulation time;'
contents += 'real sim time;Sim output time;'
contents += 'total iterations;dt;nr time steps;'
contents += 'seconds/iteration;average iterations/time step;'
contents += 'maximum iterations/time step;\n'
return contents
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def headers4df(self):
"""Create header and a minimum itemsize for string columns when
converting a Log check analysis to a pandas.DataFrame
Returns
-------
header : list
List of column names as generated by WindIO.LogFile._header
min_itemsize : dict
Dictionary with column names as keys, and the minimum string lenght
as values.
dtypes : dict
Dictionary with column names as keys, and data types as values
"""
chain_iter = chain.from_iterable
colnames = ['file_name']
colnames.extend(list(chain_iter(('nr_%i' % i, 'msg_%i' % i)
for i in range(31))) )
gr = ('first_tstep_%i', 'last_step_%i', 'nr_%i', 'msg_%i')
colnames.extend(list(chain_iter( (k % i for k in gr)
for i in range(100,105,1))) )
colnames.extend(['nr_extra', 'msg_extra'])
colnames.extend(['elapsted_time',
'last_time_step',
'simulation_time',
'real_sim_time',
'sim_output_time',
'total_iterations',
'dt',
'nr_time_steps',
'seconds_p_iteration',
'mean_iters_p_time_step',
'max_iters_p_time_step',
'sim_id'])
dtypes = {}
# str and float datatypes for
msg_cols = ['msg_%i' % i for i in range(30)]
msg_cols.extend(['msg_%i' % i for i in range(100,105,1)])
msg_cols.append('msg_extra')
dtypes.update({k:str for k in msg_cols})
# make the message/str columns long enough
min_itemsize = {'msg_%i' % i : 100 for i in range(30)}
# column names holding the number of occurances of messages
nr_cols = ['nr_%i' % i for i in range(30)]
nr_cols.extend(['nr_%i' % i for i in range(100,105,1)])
# other float values
nr_cols.extend(['elapsted_time', 'total_iterations'])
# NaN only exists in float arrays, not integers (NumPy limitation)
# so use float instead of int
dtypes.update({k:np.float64 for k in nr_cols})
return colnames, min_itemsize, dtypes
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
"""Read a HAWC2 result data file
Usage:
obj = LoadResults(file_path, file_name)
This class is called like a function:
HawcResultData() will read the specified file upon object initialization.
Available output:
obj.sig[timeStep,channel] : complete result file in a numpy array
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
obj.error_msg: is 'none' if everything went OK, otherwise it holds the
error
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos'] = pos
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""

David Verelst
committed
# ch_df columns, these are created by LoadResults._unified_channel_names
cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi', 'component',
'pos', 'coord', 'sensortype', 'radius', 'blade_nr', 'units',

David Verelst
committed
'output_type', 'io_nr', 'io', 'dll', 'azimuth', 'flap_nr',
'direction'])
# start with reading the .sel file, containing the info regarding
# how to read the binary file and the channel information
def __init__(self, file_path, file_name, debug=False, usecols=None,
readdata=True):
self.debug = debug
# timer in debug mode
if self.debug:
start = time()
self.file_path = file_path
# remove .log, .dat, .sel extensions who might be accedental left
if file_name[-4:] in ['.htc', '.sel', '.dat', '.log']:
file_name = file_name[:-4]
# FIXME: since HAWC2 will always have lower case output files, convert
# any wrongly used upper case letters to lower case here
FileName = os.path.join(self.file_path, self.file_name)
ReadOnly = 0 if readdata else 1
super(LoadResults, self).__init__(FileName, ReadOnly=ReadOnly)
self.FileType = self.FileFormat[6:]
self.N = int(self.NrSc)
self.Nch = int(self.NrCh)
self.ch_details = np.ndarray(shape=(self.Nch, 3), dtype='<U100')
for ic in range(self.Nch):
self.ch_details[ic, 0] = self.ChInfo[0][ic]
self.ch_details[ic, 1] = self.ChInfo[1][ic]
self.ch_details[ic, 2] = self.ChInfo[2][ic]
self._unified_channel_names()
if readdata:
self.sig = super(LoadResults, self).__call__(ChVec=ChVec)
if self.debug:
stop = time() - start
print('time to load HAWC2 file:', stop, 's')
def reformat_sig_details(self):
"""Change HAWC2 output description of the channels short descriptive
strings, usable in plots
obj.ch_details[channel,(0=ID; 1=units; 2=description)] : np.array
"""
# CONFIGURATION: mappings between HAWC2 and short good output:
change_list = []
change_list.append( ['original', 'new improved'] )
# change_list.append( ['Mx coo: hub1','blade1 root bending: flap'] )
# change_list.append( ['My coo: hub1','blade1 root bending: edge'] )
# change_list.append( ['Mz coo: hub1','blade1 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub2','blade2 root bending: flap'] )
# change_list.append( ['My coo: hub2','blade2 root bending: edge'] )
# change_list.append( ['Mz coo: hub2','blade2 root bending: torsion'] )
#
# change_list.append( ['Mx coo: hub3','blade3 root bending: flap'] )
# change_list.append( ['My coo: hub3','blade3 root bending: edge'] )
# change_list.append( ['Mz coo: hub3','blade3 root bending: torsion'] )
change_list.append(['Mx coo: blade1', 'blade1 flap'])
change_list.append(['My coo: blade1', 'blade1 edge'])
change_list.append(['Mz coo: blade1', 'blade1 torsion'])
change_list.append(['Mx coo: blade2', 'blade2 flap'])
change_list.append(['My coo: blade2', 'blade2 edge'])
change_list.append(['Mz coo: blade2', 'blade2 torsion'])
change_list.append(['Mx coo: blade3', 'blade3 flap'])
change_list.append(['My coo: blade3', 'blade3 edeg'])
change_list.append(['Mz coo: blade3', 'blade3 torsion'])
change_list.append(['Mx coo: hub1', 'blade1 out-of-plane'])
change_list.append(['My coo: hub1', 'blade1 in-plane'])
change_list.append(['Mz coo: hub1', 'blade1 torsion'])
change_list.append(['Mx coo: hub2', 'blade2 out-of-plane'])
change_list.append(['My coo: hub2', 'blade2 in-plane'])
change_list.append(['Mz coo: hub2', 'blade2 torsion'])
change_list.append(['Mx coo: hub3', 'blade3 out-of-plane'])
change_list.append(['My coo: hub3', 'blade3 in-plane'])
change_list.append(['Mz coo: hub3', 'blade3 torsion'])
# this one will create a false positive for tower node nr1
change_list.append(['Mx coo: tower', 'tower top momemt FA'])
change_list.append(['My coo: tower', 'tower top momemt SS'])
change_list.append(['Mz coo: tower', 'yaw-moment'])
change_list.append(['Mx coo: chasis', 'chasis momemt FA'])
change_list.append(['My coo: chasis', 'yaw-moment chasis'])
change_list.append(['Mz coo: chasis', 'chasis moment SS'])
self.ch_details_new = np.ndarray(shape=(self.Nch, 3), dtype='<U100')
# approach: look for a specific description and change it.
# This approach is slow, but will not fail if the channel numbers change
# over different simulations
for ch in range(self.Nch):
# the change_list will always be slower, so this loop will be
# inside the bigger loop of all channels
for k in range(len(change_list)):
if change_list[k][0] == self.ch_details[ch, 0]:
self.ch_details_new[ch, 0] = change_list[k][1]
# channel description should be unique, so delete current
# entry and stop looking in the change list
del change_list[k]
break
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
# TODO: THIS IS STILL A WIP
def _make_channel_names(self):
"""Give every channel a unique channel name which is (nearly) identical
to the channel names as defined in the htc output section. Instead
of spaces, use colon (;) to seperate the different commands.
THIS IS STILL A WIP
"""
index = {}
names = {'htc_name':[], 'chi':[], 'label':[], 'unit':[], 'index':[],
'name':[], 'description':[]}
constraint_fmts = {'bea1':'constraint;bearing1',
'bea2':'constraint;bearing2',
'bea3':'constraint;bearing3',
'bea4':'constraint;bearing4'}
# mbdy momentvec tower 1 1 global
force_fmts = {'F':'mbdy;forcevec;{body};{nodenr:03i};{coord};{comp}',
'M':'mbdy;momentvec;{body};{nodenr:03i};{coord};{comp}'}
state_fmt = 'mbdy;{state};{typ};{body};{elnr:03i};{zrel:01.02f};{coord}'
wind_coord_map = {'Vx':'1', 'Vy':'2', 'Vz':'3'}
wind_fmt = 'wind;{typ};{coord};{x};{y};{z};{comp}'
for ch in range(self.Nch):
name = self.ch_details[ch, 0]
name_items = misc.remove_items(name.split(' '), '')
description = self.ch_details[ch, 2]
descr_items = misc.remove_items(description.split(' '), '')
unit = self.ch_details[ch, 1]
# default names
htc_name = ' '.join(name_items+descr_items)
label = ''
coord = ''
typ = ''
elnr = ''
nodenr = ''
zrel = ''
state = ''
# CONSTRAINTS: BEARINGS
if name_items[0] in constraint_fmts:
htc_name = constraint_fmts[name_items[0]] + ';'
htc_name += (descr_items[0] + ';')
htc_name += unit
# MBDY FORCES/MOMENTS
elif name_items[0][0] in force_fmts:
comp = name_items[0]
if comp[0] == 'F':
i0 = 1
else:
i0 = 0
label = description.split('coo: ')[1].split(' ')[1]
coord = descr_items[i0+5]
body = descr_items[i0+1][5:]#.replace('Mbdy:', '')
nodenr = int(descr_items[i0+3])
htc_name = force_fmts[comp[0]].format(body=body, coord=coord,
nodenr=nodenr, comp=comp)
# STATE: POS, VEL, ACC, STATE_ROT
elif descr_items[0][:5] == 'State':
if name_items[0] == 'State':
i0 = 1
state = 'state'
else:
i0 = 0
state = 'state_rot'
typ = name_items[i0+0]
comp = name_items[i0+1]
coord = name_items[i0+3]
body = descr_items[3][5:]#.replace('Mbdy:', '')
elnr = int(descr_items[5])
zrel = float(descr_items[6][6:])#.replace('Z-rel:', ''))
if len(descr_items) > 8:
label = ' '.join(descr_items[9:])
htc_name = state_fmt.format(typ=typ, body=body, elnr=elnr,
zrel=zrel, coord=coord,
state=state)
# WINDSPEED
elif description[:9] == 'Free wind':
if descr_items[4] == 'gl.':
coord = '1' # global
else:
coord = '2' # non-rotating rotor coordinates
try:
comp = wind_coord_map[descr_items[3][:-1]]
typ = 'free_wind'
except KeyError:
comp = descr_items[3]
typ = 'free_wind_hor'
tmp = description.split('pos')[1]
x, y, z = tmp.split(',')
# z might hold a label....
z_items = z.split(' ')
if len(z_items) > 1:
label = ' '.join(z_items[1:])
z = z_items[0]
x, y, z = x.strip(), y.strip(), z.strip()
htc_name = wind_fmt.format(typ=typ, coord=coord, x=x, y=y, z=z,
comp=comp)
names['htc_name'].append(htc_name)
names['chi'].append(ch)
# this is the Channel column from the sel file, so the unique index
# which is dependent on the order of the channels
names['index'].append(ch+1)
names['unit'].append(unit)
names['name'].append(name)
names['description'].append(description)
names['label'].append(label)
names['state'].append(state)
names['type'].append(typ)
names['comp'].append(comp)
names['coord'].append(coord)
names['elnr'].append(coord)
names['nodenr'].append(coord)
names['zrel'].append(coord)
index[name] = ch
return names, index
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
def _unified_channel_names(self):
"""
Make certain channels independent from their index.
The unified channel dictionary ch_dict holds consequently named
channels as the key, and the all information is stored in the value
as another dictionary.
The ch_dict key/values pairs are structured differently for different
type of channels. Currently supported channels are:
For forcevec, momentvec, state commands:
node numbers start with 0 at the root
element numbers start with 1 at the root
key:
coord-bodyname-pos-sensortype-component
global-tower-node-002-forcevec-z
local-blade1-node-005-momentvec-z
hub1-blade1-elem-011-zrel-1.00-state pos-z
value:
ch_dict[tag]['coord']
ch_dict[tag]['bodyname']
ch_dict[tag]['pos']
ch_dict[tag]['sensortype']
ch_dict[tag]['component']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the DLL's this is:
key:
DLL-dll_name-io-io_nr
DLL-yaw_control-outvec-3
DLL-yaw_control-inpvec-1
value:
ch_dict[tag]['dll_name']
ch_dict[tag]['io']
ch_dict[tag]['io_nr']
ch_dict[tag]['chi']
ch_dict[tag]['sensortag']
ch_dict[tag]['units']
For the bearings this is:
key:
bearing-bearing_name-output_type-units
bearing-shaft_nacelle-angle_speed-rpm
value:
ch_dict[tag]['bearing_name']
ch_dict[tag]['output_type']
ch_dict[tag]['chi']
ch_dict[tag]['units']
For many of the aero sensors:
'Cl', 'Cd', 'Alfa', 'Vrel'
key:
sensortype-blade_nr-pos
Cl-1-0.01
value:
ch_dict[tag]['sensortype']
ch_dict[tag]['blade_nr']
ch_dict[tag]['pos']
ch_dict[tag]['chi']
ch_dict[tag]['units']
"""
# save them in a dictionary, use the new coherent naming structure
# as the key, and as value again a dict that hols all the different
# classifications: (chi, channel nr), (coord, coord), ...
self.ch_dict = dict()
# some channel ID's are unique, use them
ch_unique = set(['Omega', 'Ae rot. torque', 'Ae rot. power',
ch_aero = set(['Cl', 'Cd', 'Alfa', 'Vrel', 'Tors_e', 'Alfa'])
ch_aerogrid = set(['a_grid', 'am_grid'])
# also safe as df
# cols = set(['bearing_name', 'sensortag', 'bodyname', 'chi',
# 'component', 'pos', 'coord', 'sensortype', 'radius',
# 'blade_nr', 'units', 'output_type', 'io_nr', 'io', 'dll',
# 'azimuth', 'flap_nr'])
df_dict['unique_ch_name'] = []
# scan through all channels and see which can be converted
# to sensible unified name
for ch in range(self.Nch):
# remove empty values in the list
items = misc.remove_items(items, '')
dll = False
# be carefull, identify only on the starting characters, because
# the signal tag can hold random text that in some cases might
# trigger a false positive
# -----------------------------------------------------------------
# check for all the unique channel descriptions
if self.ch_details[ch,0].strip() in ch_unique:
channelinfo['units'] = self.ch_details[ch, 1]
channelinfo['sensortag'] = self.ch_details[ch, 2]
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# or in the long description:
# 0 1 2 3 4 5 6 and up
# MomentMz Mbdy:blade nodenr: 5 coo: blade TAG TEXT
coord = items[5]
bodyname = items[1].replace('Mbdy:', '')
# set nodenr to sortable way, include leading zeros
# node numbers start with 0 at the root
nodenr = '%03i' % int(items[3])
# skip the attached the component
# or give the sensor type the same name as in HAWC2
sensortype = 'momentvec'
component = items[0][-1:len(items[0])]
# the tag only exists if defined
if len(items) > 6:
sensortag = ' '.join(items[6:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 and up
# Force Fx Mbdy:blade nodenr: 2 coo: blade TAG TEXT
coord = items[6]
bodyname = items[2].replace('Mbdy:', '')
nodenr = '%03i' % int(items[4])
# skipe the attached the component
# or give the sensor type the same name as in HAWC2
sensortype = 'forcevec'
component = items[1][1]
if len(items) > 7:
sensortag = ' '.join(items[7:])
else:
sensortag = ''
# and tag it
pos = 'node-%s' % nodenr
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# 0 1 2 3 4 5 6 7 8
# State pos x Mbdy:blade E-nr: 1 Z-rel:0.00 coo: blade
# 0 1 2 3 4 5 6 7 8 9+
# State_rot proj_ang tx Mbdy:bname E-nr: 1 Z-rel:0.00 coo: cname label
# State_rot omegadot tz Mbdy:bname E-nr: 1 Z-rel:1.00 coo: cname label
elif self.ch_details[ch,2].startswith('State'):
# or self.ch_details[ch,0].startswith('euler') \
# or self.ch_details[ch,0].startswith('ax') \
# or self.ch_details[ch,0].startswith('omega') \
# or self.ch_details[ch,0].startswith('proj'):
coord = items[8]
bodyname = items[3].replace('Mbdy:', '')
# element numbers start with 1 at the root
elementnr = '%03i' % int(items[5])
zrel = '%04.2f' % float(items[6].replace('Z-rel:', ''))
# skip the attached the component
#sensortype = ''.join(items[0:2])
# or give the sensor type the same name as in HAWC2
sensortype = tmp[0]
if sensortype.startswith('State'):
sensortype += ' ' + tmp[1]
component = items[2]
if len(items) > 8:
sensortag = ' '.join(items[9:])
else:
sensortag = ''
# and tag it
pos = 'elem-%s-zrel-%s' % (elementnr, zrel)
tag = '%s-%s-%s-%s-%s' % tagitems
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['bodyname'] = bodyname
channelinfo['pos'] = pos
channelinfo['sensortype'] = sensortype
channelinfo['component'] = component
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# DLL CONTROL I/O
# there are two scenario's on how the channel description is formed
# the channel id is always the same though
# id for all three cases:
# DLL out 1: 3
# DLL inp 2: 3
# description case 1 ("dll type2_dll b2h2 inpvec 30" in htc output)
# 0 1 2 3 4+
# yaw_control outvec 3 yaw_c input reference angle
# description case 2 ("dll inpvec 2 1" in htc output):
# 0 1 2 3 4 5 6+
# DLL : 2 inpvec : 4 mgen hss
# description case 3
# 0 1 2 4
# hawc_dll :echo outvec : 1
# case 3
if items[1][0] == ':echo':
# hawc_dll named case (case 3) is polluted with colons
items = items.split(' ')
items = misc.remove_items(items, '')
dll = items[1]
io = items[2]
io_nr = items[3]
sensortag = ''
# case 2: no reference to dll name
elif self.ch_details[ch,2].startswith('DLL'):
dll = items[2]
io = items[3]
io_nr = items[5]
sensortag = ' '.join(items[6:])
# and tag it
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# case 1: type2 dll name is given
else:
dll = items[0]
io = items[1]
io_nr = items[2]
sensortag = ' '.join(items[3:])
# save all info in the dict
channelinfo = {}
channelinfo['dll'] = dll
channelinfo['io'] = io
channelinfo['io_nr'] = io_nr
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# BEARING OUTPUS
# bea1 angle_speed rpm shaft_nacelle angle speed
elif self.ch_details[ch, 0].startswith('bea'):
output_type = self.ch_details[ch, 0].split(' ')[1]
# there is no label option for the bearing output
# and tag it
tag = 'bearing-%s-%s-%s' % (bearing_name, output_type, units)
# save all info in the dict
channelinfo = {}
channelinfo['bearing_name'] = bearing_name
channelinfo['output_type'] = output_type
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc
# Cl, R= 0.5 deg Cl of blade 1 at radius 0.49
# Azi 1 deg Azimuth of blade 1
elif self.ch_details[ch, 0].split(',')[0] in ch_aero:
dscr_list = self.ch_details[ch, 2].split(' ')
dscr_list = misc.remove_items(dscr_list, '')
radius = dscr_list[-1]
# is this always valid?
# sometimes the units for aero sensors are wrong!
# there is no label option
# and tag it
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# for the induction grid over the rotor
# a_grid, azi 0.00 r 1.74
elif self.ch_details[ch, 0].split(',')[0] in ch_aerogrid:
items = self.ch_details[ch, 0].split(',')
sensortype = items[0]
items2 = items[1].split(' ')
items2 = misc.remove_items(items2, '')
azi = items2[1]
radius = items2[3]
# and tag it
tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['azimuth'] = float(azi)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# INDUCTION AT THE BLADE
# 0: Induc. Vz, rpco, R= 1.4
# 1: m/s
# 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo.
# Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo.
# Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo.
# Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo.
# Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo.
elif self.ch_details[ch, 0].strip()[:5] == 'Induc':
items = self.ch_details[ch, 2].split(' ')
items = misc.remove_items(items, '')
blade_nr = int(items[5])
radius = float(items[8].replace(',', ''))
coord = items[1].strip()
component = items[0][-2:]
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
# and tag it
rpl = (coord, blade_nr, component, radius)
tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['blade_nr'] = blade_nr
channelinfo['sensortype'] = 'induction'
channelinfo['radius'] = radius
channelinfo['coord'] = coord
channelinfo['component'] = component
channelinfo['units'] = units
channelinfo['chi'] = ch
# TODO: wind speed
# some spaces have been trimmed here
# WSP gl. coo.,Vy m/s
# // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31
# WSP gl. coo.,Vdir_hor deg
# Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31
# -----------------------------------------------------------------
# WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00
elif self.ch_details[ch, 2].startswith('Water'):
units = self.ch_details[ch, 1]
# but remove the comma
x = items[-2][:-1]
y = items[-1]
# and tag it
tag = 'watersurface-global-%s-%s' % (x, y)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (float(x), float(y))
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# WIND SPEED
# WSP gl. coo.,Vx
elif self.ch_details[ch, 0].startswith('WSP gl.'):
units = self.ch_details[ch, 1]
direction = self.ch_details[ch, 0].split(',')[1]
tmp = self.ch_details[ch, 2].split('pos')[1]
x, y, z = tmp.split(',')
x, y, z = x.strip(), y.strip(), z.strip()
# and tag it
tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (x, y, z)
channelinfo['units'] = units
channelinfo['chi'] = ch
# WIND SPEED AT BLADE
# 0: WSP Vx, glco, R= 61.5
# 2: Wind speed Vx of blade 1 at radius 61.52, global coo.
elif self.ch_details[ch, 0].startswith('WSP V'):
units = self.ch_details[ch, 1].strip()
direction = self.ch_details[ch, 0].split(' ')[1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2]
radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0]
coord = self.ch_details[ch, 2].split(',')[1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
rpl = (direction, blade_nr, radius, coord)
tag = 'wsp-blade-%s-%s-%s-%s' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['direction'] = direction
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['radius'] = float(radius)
channelinfo['units'] = units
channelinfo['chi'] = ch
# FLAP ANGLE
# 2: Flap angle for blade 3 flap number 1
elif self.ch_details[ch, 0][:7] == 'setbeta':
units = self.ch_details[ch, 1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()
blade_nr = blade_nr.split(' ')[0].strip()
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['flap_nr'] = int(flap_nr)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# ignore all the other cases we don't know how to deal with
else:
# if we get here, we don't have support yet for that sensor
# and hence we can't save it. Continue with next channel
continue
# -----------------------------------------------------------------
# ignore if we have a non unique tag
if tag in self.ch_dict:
jj = 1
while True:
tag_new = tag + '_v%i' % jj
if tag_new in self.ch_dict:
jj += 1
else:
tag = tag_new
break
# msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
# logging.warn(msg)
# else:
self.ch_dict[tag] = copy.copy(channelinfo)
# -----------------------------------------------------------------
# save in for DataFrame format
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (self.cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(tag)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _ch_dict2df(self):
"""
Create a DataFrame version of the ch_dict, and the chi columns is
set as the index
"""
# identify all the different columns
cols = set()
for ch_name, channelinfo in self.ch_dict.items():
cols.update(set(channelinfo.keys()))
df_dict['unique_ch_name'] = []
for ch_name, channelinfo in self.ch_dict.items():
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(ch_name)
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _data_window(self, nr_rev=None, time=None):
"""
Based on a time interval, create a proper slice object
======================================================
The window will start at zero and ends with the covered time range
of the time input.
Paramters
---------
nr_rev : int, default=None
NOT IMPLEMENTED YET
time : list, default=None
time = [time start, time stop]
Returns
-------
slice_
window
zoomtype
time_range
time_range = [0, time[1]]
"""
# -------------------------------------------------
# determine zome range if necesary
# -------------------------------------------------
time_range = None
if nr_rev:
raise NotImplementedError
# input is a number of revolutions, get RPM and sample rate to
# calculate the required range
# TODO: automatich detection of RPM channel!
time_range = nr_rev/(self.rpm_mean/60.)
# convert to indices instead of seconds
i_range = int(self.Freq*time_range)
window = [0, time_range]
# in case the first datapoint is not at 0 seconds
slice_ = np.r_[i_zero:i_range+i_zero]
zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'
elif time.any():
time_range = time[1] - time[0]
i_start = int(time[0]*self.Freq)
i_end = int(time[1]*self.Freq)
slice_ = np.r_[i_start:i_end]
window = [time[0], time[1]]
return slice_, window, zoomtype, time_range
# TODO: general signal method, this is not HAWC2 specific, move out
stats = {}
# calculate the statistics values:
stats['max'] = sig[i0:i1, :].max(axis=0)
stats['min'] = sig[i0:i1, :].min(axis=0)
stats['mean'] = sig[i0:i1, :].mean(axis=0)
stats['std'] = sig[i0:i1, :].std(axis=0)
stats['range'] = stats['max'] - stats['min']
stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0)
stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0))
stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
def statsdel_df(self, i0=0, i1=None, statchans='all', delchans='all',
m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46):
"""Calculate statistics and equivalent loads for the current loaded
signal.
Parameters
----------
i0 : int, default=0
i1 : int, default=None
channels : list, default='all'
all channels are selected if set to 'all', otherwise define a list
using the unique channel defintions.
neq : int, default=1
no_bins : int, default=46
Return
------
statsdel : pd.DataFrame
Pandas DataFrame with the statistical parameters and the different
fatigue coefficients as columns, and channels as rows. As index the
unique channel name is used.
"""
stats = ['max', 'min', 'mean', 'std', 'range', 'absmax', 'rms', 'int']
if statchans == 'all':
statchans = self.ch_df['unique_ch_name'].tolist()
statchis = self.ch_df['unique_ch_name'].index.values
else:
sel = self.ch_df['unique_ch_name']
statchis = self.ch_df[sel.isin(statchans)].index.values
if delchans == 'all':
delchans = self.ch_df['unique_ch_name'].tolist()
delchis = self.ch_df.index.values
else:
sel = self.ch_df['unique_ch_name']
delchis = self.ch_df[sel.isin(delchans)].index.values
# delchans has to be a subset of statchans!
if len(set(delchans) - set(statchans)) > 0:
raise ValueError('delchans has to be a subset of statchans')
tmp = np.ndarray((len(statchans), len(stats+m)))
tmp[:,:] = np.nan
m_cols = ['m=%i' % m_ for m_ in m]
statsdel = pd.DataFrame(tmp, columns=stats+m_cols)
statsdel.index = statchans
datasel = self.sig[i0:i1,statchis]
time = self.sig[i0:i1,0]
statsdel['max'] = datasel.max(axis=0)
statsdel['min'] = datasel.min(axis=0)
statsdel['mean'] = datasel.mean(axis=0)
statsdel['std'] = datasel.std(axis=0)
statsdel['range'] = statsdel['max'] - statsdel['min']
statsdel['absmax'] = np.abs(datasel).max(axis=0)
statsdel['rms'] = np.sqrt(np.mean(datasel*datasel, axis=0))
statsdel['int'] = integrate.trapz(datasel, x=time, axis=0)
statsdel['intabs'] = integrate.trapz(np.abs(datasel), x=time, axis=0)
if neq is None:
neq = self.sig[-1,0] - self.sig[0,0]
for chi, chan in zip(delchis, delchans):
signal = self.sig[i0:i1,chi]
eq = self.calc_fatigue(signal, no_bins=no_bins, neq=neq, m=m)
statsdel.loc[chan][m_cols] = eq
return statsdel
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
"""
Parameters
----------
signal: 1D array
One dimentional array containing the signal.
no_bins: int
Number of bins for the binning of the amplitudes.
m: list
Values of the slope of the SN curve.
neq: int
Number of equivalent cycles
Returns
-------
eq: list
Damage equivalent loads for each m value.
return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0]
def blade_deflection(self):
"""
"""
# select all the y deflection channels
db = misc.DictDB(self.ch_dict)
db.search({'sensortype': 'state pos', 'component': 'z'})
# sort the keys and save the mean values to an array/list
chiz, zvals = [], []
for key in sorted(db.dict_sel.keys()):
zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean())
chiz.append(db.dict_sel[key]['chi'])
# sort the keys and save the mean values to an array/list
chiy, yvals = [], []
for key in sorted(db.dict_sel.keys()):
yvals.append(self.sig[:, db.dict_sel[key]['chi']].mean())
chiy.append(db.dict_sel[key]['chi'])
return np.array(zvals), np.array(yvals)

David Verelst
committed
def save_chan_names(self, fname):
"""Save unique channel names to text file.
"""
channels = self.ch_df.ch_name.values
channels.sort()
np.savetxt(fname, channels, fmt='%-100s')
def save_channel_info(self, fname):
"""Save all channel info: unique naming + HAWC2 description from *.sel.
"""
p1 = self.ch_df.copy()
# but ignore the units column, we already have that
p2 = pd.DataFrame(self.ch_details,
columns=['Description1', 'units', 'Description2'])
# merge on the index
tmp = pd.merge(p1, p2, right_index=True, how='outer', left_index=True)
tmp.to_excel(fname)
# for a fixed-with text format instead of csv
# header = ''.join(['%100s' % k for k in tmp.columns])
# header = ' windspeed' + header
# np.savetxt(fname, tmp.to_records(), header=header,
# fmt='% 01.06e ')
return tmp

David Verelst
committed
def load_chan_names(self, fname):
dtype = np.dtype('U100')
return np.genfromtxt(fname, dtype=dtype, delimiter=';').tolist()
def save_csv(self, fname, fmt='%.18e', delimiter=','):
"""
Save to csv and use the unified channel names as columns
"""
map_sorting = {}
# first, sort on channel index
for ch_key, ch in self.ch_dict.items():
map_sorting[ch['chi']] = ch_key
header = []
# not all channels might be present...iterate again over map_sorting
for chi in map_sorting:
try:
sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
header.append(map_sorting[chi] + ' // ' + sensortag)
except:
header.append(map_sorting[chi])
# and save
print('saving...', end='')
np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt,
delimiter=delimiter, header=delimiter.join(header))
print(fname)
def save_df(self, fname):
"""
Save the HAWC2 data and sel file in a DataFrame that contains all the
data, and all the channel information (the one from the sel file
and the parsed from this function)
"""
self.sig
self.ch_details
self.ch_dict
def ReadOutputAtTime(fname):
"""Distributed blade loading as generated by the HAWC2 output_at_time
command. From HAWC2 12.3-beta and onwards, there are 7 header columns,
earlier version only have 3.
Parameters
----------
fname : str
header_lnr : int, default=3
Line number of the header (column names) (1-based counting).
# data = pd.read_fwf(fname, skiprows=3, header=None)
# pd.read_table(fname, sep=' ', skiprows=3)
# data.index.names = cols
# because the formatting is really weird, we need to sanatize it a bit
with opent(fname, 'r') as f:
# read the header from line 3
for k in range(7):
line = f.readline()
if line[0:12].lower().replace('#', '').strip() == 'radius_s':
header_lnr = k + 1
break
header = line.replace('\r', '').replace('\n', '')
cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]
data = np.loadtxt(fname, skiprows=header_lnr)
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
return pd.DataFrame(data, columns=cols)
def ReadEigenBody(fname, debug=False):
"""
Read HAWC2 body eigenalysis result file
=======================================
Parameters
----------
file_path : str
file_name : str
Returns
-------
results : DataFrame
Columns: body, Fd_hz, Fn_hz, log_decr_pct
"""
# Body data for body number : 3 with the name :nacelle
# Results: fd [Hz] fn [Hz] log.decr [%]
# Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02
FILE = opent(fname)
lines = FILE.readlines()
FILE.close()
df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []}
for i, line in enumerate(lines):
if debug: print('line nr: %5i' % i)
# identify for which body we will read the data
if line[:25] == 'Body data for body number':
body = line.split(':')[2].rstrip().lstrip()
# remove any annoying characters
if debug: print('modes for body: %s' % body)
# identify mode number and read the eigenfrequencies
elif line[:8] == 'Mode nr:':
linelist = line.replace('\n', '').replace('\r', '').split(':')
# modenr = linelist[1].rstrip().lstrip()
# text after Mode nr can be empty
try:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
except IndexError:
eigenmodes = ['0', '0', '0']
if debug: print(eigenmodes)
# in case we have more than 3, remove all the empty ones
# this can happen when there are NaN values
if not len(eigenmodes) == 3:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
eigmod = []
for k in eigenmodes:
if len(k) > 1:
eigmod.append(k)
else:
eigmod = eigenmodes
# remove any trailing spaces for each element
for k in range(len(eigmod)):
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
df_dict['body'].append(body)
df_dict['Fd_hz'].append(eigmod[0])
df_dict['Fn_hz'].append(eigmod[1])
df_dict['log_decr_pct'].append(eigmod[2])
return pd.DataFrame(df_dict)
def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
"""
Read HAWC2 structure eigenalysis result file
============================================
The file looks as follows:
#0 Version ID : HAWC2MB 11.3
#1 ___________________________________________________________________
#2 Structure eigenanalysis output
#3 ___________________________________________________________________
#4 Time : 13:46:59
#5 Date : 28:11.2012
#6 ___________________________________________________________________
#7 Results: fd [Hz] fn [Hz] log.decr [%]
#8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
#...
#302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
Parameters
----------
file_path : str
file_name : str
debug : boolean, default=False
max_modes : int
Stop evaluating the result after max_modes number of modes have been
identified
Returns
-------
modes_arr : ndarray(3,n)
An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping
decrement [%] for n different structural eigenmodes
"""
# 0 Version ID : HAWC2MB 11.3
# 1 ___________________________________________________________________
# 2 Structure eigenanalysis output
# 3 ___________________________________________________________________
# 4 Time : 13:46:59
# 5 Date : 28:11.2012
# 6 ___________________________________________________________________
# 7 Results: fd [Hz] fn [Hz] log.decr [%]
# 8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
# Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
FILE = opent(os.path.join(file_path, file_name))
lines = FILE.readlines()
FILE.close()
header_lines = 8
# we now the number of modes by having the number of lines
nrofmodes = len(lines) - header_lines
for i, line in enumerate(lines):
if i > max_modes:
# cut off the unused rest
break
# ignore the header
if i < header_lines:
continue
# split up mode nr from the rest
parts = line.split(':')
# get fd, fn and damping, but remove all empty items on the list
modes_arr[:, i-header_lines]=misc.remove_items(parts[2].split(' '), '')
return modes_arr
"""
"""
def __init__(self):
pass
def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3,
nr_vert=20, h_ME=500.0, io=None, wdir=None):
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
"""
Parameters
----------
z_h : float
Hub height
r_blade_tip : float
Blade tip radius
a_phi : float, default=None
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
shear_exp : float, default=None
nr_vert : int, default=3
nr_hor : int, default=20
h_ME : float, default=500
Modified Ekman parameter. Take roughly 500 for off shore sites,
1000 for on shore sites.
io : str or io buffer, default=None
When specified, the HAWC2 user defined shear input file will be
written.
wdir : float, default=None
A constant veer angle, or yaw angle. Equivalent to setting the
wind direction. Angle in degrees.
Returns
-------
uu, vv, ww, xx, zz
"""
x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert,
nr_hor=nr_hor)
if a_phi is not None:
phi_rad = WindProfiles.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
assert len(phi_rad) == nr_vert
else:
nr_vert = len(z)
phi_rad = np.zeros((nr_vert,))
# add any yaw error on top of
if wdir is not None:
# because wdir cw positive, and phi veer ccw positive
phi_rad -= (wdir*np.pi/180.0)
u, v, w = self.decompose_veer(phi_rad, nr_hor)
# when no shear is defined
if shear_exp is None:
uu = u
vv = v
ww = w
else:
# scale the shear on top of the veer
shear = WindProfiles.powerlaw(z, z_h, shear_exp)
uu = u*shear[:,np.newaxis]
vv = v*shear[:,np.newaxis]
ww = w*shear[:,np.newaxis]
# and write to a file
if isinstance(io, str):
with open(io, 'wb') as fid:
fid = self.write(fid, uu, vv, ww, x, z)
self.fid =None
elif io is not None:
io = self.write(io, uu, vv, ww, x, z)
self.fid = io
return uu, vv, ww, x, z
def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20):
"""
Utility to create the coordinates of the wind field based on hub heigth
and blade length. Add 15% to r_blade_tip to make sure horizontal edges
are defined wide enough.
"""
# take 15% extra space after the blade tip
z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert)
# along the horizontal, coordinates with 0 at the rotor center
x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor)
return x, z
def deltaphi2aphi(self, d_phi, z_h, r_blade_tip, h_ME=500.0):
"""For a given `\\Delta \\varphi` over the rotor diameter, estimate
the corresponding `a_{\\varphi}`.
Parameters
----------
`\\Delta \\varphi` : ndarray or float
Veer angle difference over the rotor plane from lowest to highest
blade tip position.
z_h : float
Hub height in meters.
r_blade_tip : float
Blade tip radius/length.
h_ME : float, default=500.0
Modified Ekman parameter. For on shore,
:math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
Returns
-------
`a_{\\varphi}` : ndarray or float
"""
t1 = r_blade_tip * 2.0 * np.exp(-z_h/(h_ME))
a_phi = d_phi * np.sqrt(h_ME*z_h) / t1
return a_phi
def deltaphi2aphi_opt(self, deltaphi, z, z_h, r_blade_tip, h_ME):
"""
convert delta_phi over a given interval z to a_phi using
scipy.optimize.fsolve on veer_ekman_mod.
Parameters
----------
deltaphi : float
Desired delta phi in rad over interval z[0] at bottom to z[1] at
the top.
def func(a_phi, z, z_h, h_ME, deltaphi_target):
phis = WindProfiles.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
return np.abs(deltaphi_target - (phis[1] - phis[0]))
args = (z, z_h, h_ME, deltaphi)
return sp.optimize.fsolve(func, [0], args=args)[0]
def decompose_veer(self, phi_rad, nr_hor):
"""
Convert a veer angle into u, v, and w components, ready for the
HAWC2 user defined veer input file. nr_vert refers to the number of
vertical grid points.
Paramters
---------
phi_rad : ndarray(nr_vert)
veer angle in radians as function of height
nr_hor : int
Number of horizontal grid points
Returns
-------
u : ndarray(nr_hor, nr_vert)
v : ndarray(nr_hor, nr_vert)
w : ndarray(nr_hor, nr_vert)
"""
nr_vert = len(phi_rad)
tan_phi = np.tan(phi_rad)
# convert veer angles to veer components in v, u. Make sure the
# normalized wind speed remains 1!
# u = sympy.Symbol('u')
# v = sympy.Symbol('v')
# tan_phi = sympy.Symbol('tan_phi')
# eq1 = u**2.0 + v**2.0 - 1.0
# eq2 = (tan_phi*u/v) - 1.0
# sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True)
# # proposed solution is:
# u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi
# v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))
# # but that gives the sign switch wrong, simplify/rewrite to:
u = np.sqrt(1.0/(tan_phi**2 + 1.0))
v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi
# verify they are actually the same but the sign:
# assert np.allclose(np.abs(u), np.abs(u2))
# assert np.allclose(np.abs(v), np.abs(v2))
u_full = u[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
v_full = v[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
w_full = np.zeros((nr_vert, nr_hor))
return u_full, v_full, w_full
def read(self, fname):
Read a user defined shear input file as used for HAWC2.
Returns
-------
u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
"""
# read the header
with opent(fname) as f:
for i, line in enumerate(f.readlines()):
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
if line.strip()[0] != '#':
nr_v, nr_w = misc.remove_items(line.split('#')[0].split(), '')
nr_hor, nr_vert = int(nr_v), int(nr_w)
i_header = i
break
# u,v and w components on 2D grid
tmp = np.genfromtxt(fname, skip_header=i_header+1, comments='#',
max_rows=nr_vert*3)
if not tmp.shape == (nr_vert*3, nr_hor):
raise AssertionError('user defined shear input file inconsistent')
v_comp = tmp[:nr_vert,:]
u_comp = tmp[nr_vert:nr_vert*2,:]
w_comp = tmp[nr_vert*2:nr_vert*3,:]
# coordinates of the 2D grid
tmp = np.genfromtxt(fname, skip_header=3*(nr_vert+1)+2,
max_rows=nr_hor+nr_vert)
if not tmp.shape == (nr_vert+nr_hor,):
raise AssertionError('user defined shear input file inconsistent')
v_coord = tmp[:nr_hor]
w_coord = tmp[nr_hor:]
phi_deg = np.arctan(v_comp[:, 0]/u_comp[:, 0])*180.0/np.pi
return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
def write(self, fid, u, v, w, v_coord, w_coord, fmt_uvw='% 08.05f',
fmt_coord='% 8.02f'):
"""Write a user defined shear input file for HAWC2.
"""
nr_hor = len(v_coord)
nr_vert = len(w_coord)
try:
assert u.shape == v.shape
assert u.shape == w.shape
assert u.shape[0] == nr_vert
assert u.shape[1] == nr_hor
except AssertionError:
raise ValueError('u, v, w shapes should be consistent with '
'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, '
'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert))
fid.write(b'# User defined shear file\n')
tmp = '%i %i # nr_hor (v), nr_vert (w)\n' % (nr_hor, nr_vert)
fid.write(tmp.encode())

David Verelst
committed
h1 = 'normalized with U_mean, nr_hor (v) rows, nr_vert (w) columns'
fid.write(('# v component, %s\n' % h1).encode())
np.savetxt(fid, v, fmt=fmt_uvw, delimiter=' ')

David Verelst
committed
fid.write(('# u component, %s\n' % h1).encode())
np.savetxt(fid, u, fmt=fmt_uvw, delimiter=' ')

David Verelst
committed
fid.write(('# w component, %s\n' % h1).encode())
np.savetxt(fid, w, fmt=fmt_uvw, delimiter=' ')

David Verelst
committed
h2 = '# v coordinates (along the horizontal, nr_hor, 0 rotor center)'
fid.write(('%s\n' % h2).encode())
np.savetxt(fid, v_coord.reshape((v_coord.size, 1)), fmt=fmt_coord)

David Verelst
committed
h3 = '# w coordinates (zero is at ground level, height, nr_hor)'
fid.write(('%s\n' % h3).encode())
np.savetxt(fid, w_coord.reshape((w_coord.size, 1)), fmt=fmt_coord)
return fid
class WindProfiles(object):
def logarithmic(z, z_ref, r_0):
return np.log10(z/r_0)/np.log10(z_ref/r_0)
def powerlaw(z, z_ref, a):
profile = np.power(z/z_ref, a)
# when a negative, make sure we return zero and not inf
profile[np.isinf(profile)] = 0.0
return profile
def veer_ekman_mod(z, z_h, h_ME=500.0, a_phi=0.5):
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
"""
Modified Ekman veer profile, as defined by Mark C. Kelly in email on
10 October 2014 15:10 (RE: veer profile)
.. math::
\\varphi(z) - \\varphi(z_H) \\approx a_{\\varphi}
e^{-\sqrt{z_H/h_{ME}}}
\\frac{z-z_H}{\sqrt{z_H*h_{ME}}}
\\left( 1 - \\frac{z-z_H}{2 \sqrt{z_H h_{ME}}}
- \\frac{z-z_H}{4z_H} \\right)
where:
:math:`h_{ME} \\equiv \\frac{\\kappa u_*}{f}`
and :math:`f = 2 \Omega \sin \\varphi` is the coriolis parameter,
and :math:`\\kappa = 0.41` as the von Karman constant,
and :math:`u_\\star = \\sqrt{\\frac{\\tau_w}{\\rho}}` friction velocity.
For on shore, :math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
:math:`a_{\\varphi} \\approx 0.5`
Parameters
----------
z : ndarray(n)
z-coordinates (height) of the grid on which the veer angle should
be calculated.
z_h : float
Hub height in meters.
:math:`a_{\\varphi}` : default=0.5
Parameter for the modified Ekman veer distribution. Value varies
between -1.2 and 0.5.
Returns
-------
phi_rad : ndarray
Veer angle in radians as function of z.
"""
t1 = np.exp(-math.sqrt(z_h / h_ME))
t2 = (z - z_h) / math.sqrt(z_h * h_ME)
t3 = (1.0 - (z-z_h)/(2.0*math.sqrt(z_h*h_ME)) - (z-z_h)/(4.0*z_h))
return a_phi * t1 * t2 * t3
class Turbulence(object):
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
def __init__(self):
pass
def read_hawc2(self, fpath, shape):
"""
Read the HAWC2 turbulence format
"""
fid = open(fpath, 'rb')
tmp = np.fromfile(fid, 'float32', shape[0]*shape[1]*shape[2])
turb = np.reshape(tmp, shape)
return turb
def read_bladed(self, fpath, basename):
fid = open(fpath + basename + '.wnd', 'rb')
R1 = struct.unpack('h', fid.read(2))[0]
R2 = struct.unpack('h', fid.read(2))[0]
turb = struct.unpack('i', fid.read(4))[0]
lat = struct.unpack('f', fid.read(4))[0]
rough = struct.unpack('f', fid.read(4))[0]
refh = struct.unpack('f', fid.read(4))[0]
longti = struct.unpack('f', fid.read(4))[0]
latti = struct.unpack('f', fid.read(4))[0]
vertti = struct.unpack('f', fid.read(4))[0]
dv = struct.unpack('f', fid.read(4))[0]
dw = struct.unpack('f', fid.read(4))[0]
du = struct.unpack('f', fid.read(4))[0]
halfalong = struct.unpack('i', fid.read(4))[0]
mean_ws = struct.unpack('f', fid.read(4))[0]
VertLongComp = struct.unpack('f', fid.read(4))[0]
LatLongComp = struct.unpack('f', fid.read(4))[0]
LongLongComp = struct.unpack('f', fid.read(4))[0]
Int = struct.unpack('i', fid.read(4))[0]
seed = struct.unpack('i', fid.read(4))[0]
VertGpNum = struct.unpack('i', fid.read(4))[0]
LatGpNum = struct.unpack('i', fid.read(4))[0]
VertLatComp = struct.unpack('f', fid.read(4))[0]
LatLatComp = struct.unpack('f', fid.read(4))[0]
LongLatComp = struct.unpack('f', fid.read(4))[0]
VertVertComp = struct.unpack('f', fid.read(4))[0]
LatVertComp = struct.unpack('f', fid.read(4))[0]
LongVertComp = struct.unpack('f', fid.read(4))[0]
points = np.fromfile(fid, 'int16', 2*halfalong*VertGpNum*LatGpNum*3)
fid.close()
return points
def convert2bladed(self, fpath, basename, shape=(4096,32,32)):
"""
Convert turbulence box to BLADED format
"""
u = self.read_hawc2(fpath + basename + 'u.bin', shape)
v = self.read_hawc2(fpath + basename + 'v.bin', shape)
w = self.read_hawc2(fpath + basename + 'w.bin', shape)
# mean velocity components at the center of the box
v1, v2 = (shape[1]/2)-1, shape[1]/2
w1, w2 = (shape[2]/2)-1, shape[2]/2
ucent = (u[:, v1, w1] + u[:, v1, w2] + u[:, v2, w1] + u[:, v2, w2]) / 4.0
vcent = (v[:, v1, w1] + v[:, v1, w2] + v[:, v2, w1] + v[:, v2, w2]) / 4.0
wcent = (w[:, v1, w1] + w[:, v1, w2] + w[:, v2, w1] + w[:, v2, w2]) / 4.0
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
# FIXME: where is this range 351:7374 coming from?? The original script
# considered a box of lenght 8192
umean = np.mean(ucent[351:7374])
vmean = np.mean(vcent[351:7374])
wmean = np.mean(wcent[351:7374])
ustd = np.std(ucent[351:7374])
vstd = np.std(vcent[351:7374])
wstd = np.std(wcent[351:7374])
# gives a slight different outcome, but that is that significant?
# umean = np.mean(u[351:7374,15:17,15:17])
# vmean = np.mean(v[351:7374,15:17,15:17])
# wmean = np.mean(w[351:7374,15:17,15:17])
# this is wrong since we want the std on the center point
# ustd = np.std(u[351:7374,15:17,15:17])
# vstd = np.std(v[351:7374,15:17,15:17])
# wstd = np.std(w[351:7374,15:17,15:17])
iu = np.zeros(shape)
iv = np.zeros(shape)
iw = np.zeros(shape)
iu[:, :, :] = (u - umean)/ustd*1000.0
iv[:, :, :] = (v - vmean)/vstd*1000.0
iw[:, :, :] = (w - wmean)/wstd*1000.0
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
# because MATLAB and Octave do a round when casting from float to int,
# and Python does a floor, we have to round first
np.around(iu, decimals=0, out=iu)
np.around(iv, decimals=0, out=iv)
np.around(iw, decimals=0, out=iw)
return iu.astype(np.int16), iv.astype(np.int16), iw.astype(np.int16)
def write_bladed(self, fpath, basename, shape):
"""
Write turbulence BLADED file
"""
# TODO: get these parameters from a HAWC2 input file
seed = 6
mean_ws = 11.4
turb = 3
R1 = -99
R2 = 4
du = 0.974121094
dv = 4.6875
Loading
Loading full blame...