Newer
Older
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 27 11:09:04 2012
Library for general stuff
@author: dave
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
from __future__ import absolute_import
from builtins import range
from builtins import dict
from builtins import int
from builtins import str
from future import standard_library
standard_library.install_aliases()
from builtins import object
import os
import sys
import shutil
import unittest
import pickle
import re
import numpy as np
import scipy as sp
from scipy import optimize as opt
from scipy import stats
from scipy.interpolate import griddata as interp
try:
from matplotlib import pyplot as plt
except:
pass
"""The Logger class can be used to redirect standard output to a log file.
Usage: Create a Logger object and redirect standard output to the Logger
object. For example:
output = Logger(file_handle, True)
import sys
sys.stdout = output
"""
def __init__(self, logFile, echo):
"""Arguments:
logFile a file object that is available for writing
echo Boolean. If True, output is sent to standard output in
addition to the log file.
"""
import sys
self.out = sys.stdout
self.logFile = logFile
self.echo = echo
def write(self, s):
"""Required method that replaces stdout. You don't have to call this
directly--all print statements will be redirected here."""
self.logFile.write(s)
if self.echo:
self.out.write(s)
self.logFile.flush()
def path_split_dirs(path):
"""
Return a list with dirnames. Ignore any leading "./"
"""
dirs = path.split(os.path.sep)
if dirs[0] == '.':
dirs.pop(0)
return dirs
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def print_both(f, text, end='\n'):
"""
Print both to a file and the console
"""
print(text)
if isinstance(f, file):
f.write(text + end)
def unique(s):
"""
SOURCE: http://code.activestate.com/recipes/52560/
AUTHOR: Tim Peters
Return a list of the elements in s, but without duplicates.
For example, unique([1,2,3,1,2,3]) is some permutation of [1,2,3],
unique("abcabc") some permutation of ["a", "b", "c"], and
unique(([1, 2], [2, 3], [1, 2])) some permutation of
[[2, 3], [1, 2]].
For best speed, all sequence elements should be hashable. Then
unique() will usually work in linear time.
If not possible, the sequence elements should enjoy a total
ordering, and if list(s).sort() doesn't raise TypeError it's
assumed that they do enjoy a total ordering. Then unique() will
usually work in O(N*log2(N)) time.
If that's not possible either, the sequence elements must support
equality-testing. Then unique() will usually work in quadratic
time.
"""
n = len(s)
if n == 0:
return []
# Try using a dict first, as that's the fastest and will usually
# work. If it doesn't work, it will usually fail quickly, so it
# usually doesn't cost much to *try* it. It requires that all the
# sequence elements be hashable, and support equality comparison.
u = {}
try:
for x in s:
u[x] = 1
except TypeError:
del u # move on to the next method
else:
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# We can't hash all the elements. Second fastest is to sort,
# which brings the equal elements together; then duplicates are
# easy to weed out in a single pass.
# NOTE: Python's list.sort() was designed to be efficient in the
# presence of many duplicate elements. This isn't true of all
# sort functions in all languages or libraries, so this approach
# is more effective in Python than it may be elsewhere.
try:
t = list(s)
t.sort()
except TypeError:
del t # move on to the next method
else:
assert n > 0
last = t[0]
lasti = i = 1
while i < n:
if t[i] != last:
t[lasti] = last = t[i]
lasti += 1
i += 1
return t[:lasti]
# Brute force is all that's left.
u = []
for x in s:
if x not in u:
u.append(x)
return u
def CoeffDeter(obs, model):
"""
Coefficient of determination
============================
https://en.wikipedia.org/wiki/Coefficient_of_determination
Parameters
----------
obs : ndarray(n) or list
The observed dataset
model : ndarray(n), list or scalar
The fitted dataset
Returns
-------
R2 : float
The coefficient of determination, varies between 1 for a perfect fit,
and 0 for the worst possible fit ever
"""
if type(obs).__name__ == 'list':
obs = np.array(obs)
SS_tot = np.sum(np.power( (obs - obs.mean()), 2 ))
SS_err = np.sum(np.power( (obs - model), 2 ))
R2 = 1 - (SS_err/SS_tot)
return R2
def calc_sample_rate(time, rel_error=1e-4):
"""
the sample rate should be constant throughout the measurement serie
define the maximum allowable relative error on the local sample rate
rel_error = 1e-4 # 0.0001 = 0.01%
"""
deltas = np.diff(time)
# the sample rate should be constant throughout the measurement serie
# define the maximum allowable relative error on the local sample rate
if not (deltas.max() - deltas.min())/deltas.max() < rel_error:
print('Sample rate not constant, max, min values:', end='')
print('%1.6f, %1.6f' % (1/deltas.max(), 1/deltas.min()))
# raise AssertionError
return 1/deltas.mean()
def findIntersection(fun1, fun2, x0):
"""
Find Intersection points of two functions
=========================================
Find the intersection between two random callable functions.
The other alternative is that they are not callable, but are just numpy
arrays describing the functions.
Parameters
----------
fun1 : calable
Function 1, should return a scalar and have one argument
fun2 : calable
Function 2, should return a scalar and have one argument
x0 : float
Initial guess for sp.optimize.fsolve
Returns
-------
"""
return sp.optimize.fsolve(lambda x : fun1(x) - fun2(x), x0)
# TODO: replace this with some of the pyrain functions
def find0(array, xi=0, yi=1, verbose=False, zerovalue=0.0):
"""
Find single zero crossing
=========================
Find the point where a x-y dataset crosses zero. This method can only
handle one zero crossing point.
Parameters
----------
array : ndarray
should be 2D, with a least 2 columns and 2 rows
xi : int, default=0
index of the x values on array[:,xi]
yi : int, default=1
index of the y values on array[:,yi]
zerovalue : float, default=0
Set tot non zero to find the corresponding crossing.
verbose : boolean, default=False
if True intermediate results are printed. Usefull for debugging
Returns
-------
y0 : float
if no x0=0 exists, the result will be an interpolation between
the two points around 0.
y0i : int
index leading to y0 in the input array. In case y0 was the
result of an interpolation, the result is the one closest to x0=0
"""
# Determine the two points where aoa=0 lies in between
# take all the negative values, the maximum is the one closest to 0
try:
neg0i = np.abs(array[array[:,xi].__le__(zerovalue),xi]).argmax()
# This method will fail if there is no zero crossing (not enough data)
# in other words: does the given data range span from negative, to zero to
# positive?
except ValueError:
print('Given data range does not include zero crossing.')
return 0,0
# find the points closest to zero, sort on absolute values
isort = np.argsort(np.abs(array[:,xi]-zerovalue))
if verbose:
print(array[isort,:])
# find the points closest to zero on both ends of the axis
neg0i = isort[0]
sign = int(np.sign(array[neg0i,xi]))
# only search for ten points
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# first time we switch sign, we have it
if int(np.sign(array[isort[i],xi])) is not sign:
pos0i = isort[i]
break
try:
pos0i
except NameError:
print('Given data range does not include zero crossing.')
return 0,0
# find the value closest to zero on the positive side
# pos0i = neg0i +1
if verbose:
print('0_negi, 0_posi', neg0i, pos0i)
print('x[neg0i], x[pos0i]', array[neg0i,xi], array[pos0i,xi])
# check if x=0 is an actual point of the series
if np.allclose(array[neg0i,xi], 0):
y0 = array[neg0i,yi]
if verbose:
prec = ' 01.08f'
print('y0:', format(y0, prec))
print('x0:', format(array[neg0i,xi], prec))
# check if x=0 is an actual point of the series
elif np.allclose(array[pos0i,xi], 0):
y0 = array[pos0i,yi]
if verbose:
prec = ' 01.08f'
print('y0:', format(y0, prec))
print('x0:', format(array[pos0i,xi], prec))
# if not very close to zero, interpollate to find the zero point
else:
y1 = array[neg0i,yi]
y2 = array[pos0i,yi]
x1 = array[neg0i,xi]
x2 = array[pos0i,xi]
y0 = (-x1*(y2-y1)/(x2-x1)) + y1
if verbose:
prec = ' 01.08f'
print('y0:', format(y0, prec))
print('y1, y2', format(y1, prec), format(y2, prec))
print('x1, x2', format(x1, prec), format(x2, prec))
# return the index closest to the value of AoA zero
if abs(array[neg0i,0]) > abs(array[pos0i,0]):
y0i = pos0i
else:
y0i = neg0i
return y0, y0i
def remove_items(list, value):
"""Remove items from list
The given list wil be returned withouth the items equal to value.
Empty ('') is allowed. So this is een extension on list.remove()
"""
# remove list entries who are equal to value
ind_del = []
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
if list[i] == value:
# add item at the beginning of the list
ind_del.insert(0, i)
# remove only when there is something to remove
if len(ind_del) > 0:
for k in ind_del:
del list[k]
return list
class DictDB(object):
"""
A dictionary based database class
=================================
Each tag corresponds to a row and each value holds another tag holding
the tables values, or for the current row the column values.
Each tag should hold a dictionary for which the subtags are the same for
each row entry. Otherwise you have columns appearing and dissapearing.
That is not how a database is expected to behave.
"""
def __init__(self, dict_db):
"""
"""
# TODO: data checks to see if the dict can qualify as a database
# in this context
self.dict_db = dict_db
def search(self, dict_search):
"""
Search a dictionary based database
==================================
Searching on based keys having a certain value.
Parameters
----------
search_dict : dictionary
Keys are the column names. If the values match the ones in the
database, the respective row gets selected. Each tag is hence
a unique row identifier. In case the value is a list (or it will
be faster if it is a set), all the list entries are considered as
a go.
"""
self.dict_sel = dict()
# browse through all the rows
for row in self.dict_db:
# and for each search value, check if the row holds the requested
# column value
init = True
alltrue = True
for col_search, val_search in list(dict_search.items()):
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# for backwards compatibility, convert val_search to list
if not type(val_search).__name__ in ['set', 'list']:
# conversion to set is more costly than what you gain
# by target in set([]) compared to target in []
# conclusion: keep it as a list
val_search = [val_search]
# all items should be true
# if the key doesn't exists, it is not to be considered
try:
if self.dict_db[row][col_search] in val_search:
if init or alltrue:
alltrue = True
else:
alltrue = False
except KeyError:
alltrue = False
init = False
# all search criteria match, save the row
if alltrue:
self.dict_sel[row] = self.dict_db[row]
# TODO: merge with search into a more general search/select method?
# shouldn't I be moving to a proper database with queries?
def search_key(self, dict_search):
"""
Search for a string in dictionary keys
======================================
Searching based on the key of the dictionaries, not the values
Parameters
----------
searchdict : dict
As key the search string, as value the operator: True for inclusive
and False for exclusive. Operator is AND.
"""
self.dict_sel = dict()
# browse through all the rows
for row in self.dict_db:
# and see for each row if its name contains the search strings
init = True
alltrue = True
for col_search, inc_exc in dict_search.items():
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# is it inclusive the search string or exclusive?
if (row.find(col_search) > -1) == inc_exc:
if init:
alltrue = True
else:
alltrue = False
break
init = False
# all search criteria matched, save the row
if alltrue:
self.dict_sel[row] = self.dict_db[row]
class DictDiff(object):
"""
Calculate the difference between two dictionaries as:
(1) items added
(2) items removed
(3) keys same in both but changed values
(4) keys same in both and unchanged values
Source
------
Basic idea of the magic is based on following stackoverflow question
http://stackoverflow.com/questions/1165352/
fast-comparison-between-two-python-dictionary
"""
def __init__(self, current_dict, past_dict):
self.current_d = current_dict
self.past_d = past_dict
self.set_current = set(current_dict.keys())
self.set_past = set(past_dict.keys())
self.intersect = self.set_current.intersection(self.set_past)
def added(self):
return self.set_current - self.intersect
def removed(self):
return self.set_past - self.intersect
def changed(self):
#set(o for o in self.intersect if self.past_d[o] != self.current_d[o])
# which is the similar (exept for the extension) as below
olist = []
for o in self.intersect:
# if we have a numpy array
if type(self.past_d[o]).__name__ == 'ndarray':
if not np.allclose(self.past_d[o], self.current_d[o]):
olist.append(o)
elif self.past_d[o] != self.current_d[o]:
olist.append(o)
return set(olist)
def unchanged(self):
t=set(o for o in self.intersect if self.past_d[o] == self.current_d[o])
return t
def fit_exp(time, data, checkplot=True, method='linear', func=None, C0=0.0):
"""
Note that all values in data have to be possitive for this method to work!
"""
def fit_exp_linear(t, y, C=0):
y = y - C
y = np.log(y)
K, A_log = np.polyfit(t, y, 1)
A = np.exp(A_log)
return A, K
def fit_exp_nonlinear(t, y):
# The model function, f(x, ...). It must take the independent variable
# as the first argument and the parameters to fit as separate remaining
# arguments.
opt_parms, parm_cov = sp.optimize.curve_fit(model_func,t,y)
A, K, C = opt_parms
return A, K, C
def model_func(t, A, K, C):
return A * np.exp(K * t) + C
# Linear fit
if method == 'linear':
# if data.min() < 0.0:
# msg = 'Linear exponential fitting only works for positive values'
# raise ValueError, msg
A, K = fit_exp_linear(time, data, C=C0)
fit = model_func(time, A, K, C0)
C = C0
# Non-linear Fit
elif method == 'nonlinear':
A, K, C = fit_exp_nonlinear(time, data)
fit = model_func(time, A, K, C)
if checkplot:
plt.figure()
plt.plot(time, data, 'ro', label='data')
plt.plot(time, fit, 'b', label=method)
plt.legend(bbox_to_anchor=(0.9, 1.1), ncol=2)
plt.grid()
return fit, A, K, C
def curve_fit_exp(time, data, checkplot=True, weights=None):
"""
This code is based on a StackOverflow question/answer:
http://stackoverflow.com/questions/3938042/
fitting-exponential-decay-with-no-initial-guessing
A*e**(K*t) + C
"""
def fit_exp_linear(t, y, C=0):
y = y - C
y = np.log(y)
K, A_log = np.polyfit(t, y, 1)
A = np.exp(A_log)
return A, K
def fit_exp_nonlinear(t, y):
# The model function, f(x, ...). It must take the independent variable
# as the first argument and the parameters to fit as separate remaining
# arguments.
opt_parms, parm_cov = sp.optimize.curve_fit(model_func,t,y)
A, K, C = opt_parms
return A, K, C
def model_func(t, A, K, C):
return A * np.exp(K * t) + C
C0 = 0
## Actual parameters
#A0, K0, C0 = 2.5, -4.0, 0.0
## Generate some data based on these
#tmin, tmax = 0, 0.5
#num = 20
#t = np.linspace(tmin, tmax, num)
#y = model_func(t, A0, K0, C0)
## Add noise
#noisy_y = y + 0.5 * (np.random.random(num) - 0.5)
# Linear fit
A_lin, K_lin = fit_exp_linear(time, data, C=C0)
fit_lin = model_func(time, A_lin, K_lin, C0)
# Non-linear Fit
A_nonlin, K_nonlin, C = fit_exp_nonlinear(time, data)
fit_nonlin = model_func(time, A_nonlin, K_nonlin, C)
# and plot
if checkplot:
plt.figure()
plt.plot(time, data, 'ro', label='data')
plt.plot(time, fit_lin, 'b', label='linear')
plt.plot(time[::-1], fit_nonlin, 'g', label='nonlinear')
plt.legend(bbox_to_anchor=(0.9, 1.0), ncol=3)
plt.grid()
return
def convert_to_utf8(filename):
# gather the encodings you think that the file may be
# encoded inside a tuple
encodings = ('windows-1253', 'iso-8859-7', 'macgreek')
# try to open the file and exit if some IOError occurs
try:
f = open(filename, 'r').read()
except Exception:
sys.exit(1)
# now start iterating in our encodings tuple and try to
# decode the file
for enc in encodings:
try:
# try to decode the file with the first encoding
# from the tuple.
# if it succeeds then it will reach break, so we
# will be out of the loop (something we want on
# success).
# the data variable will hold our decoded text
data = f.decode(enc)
break
except Exception:
# if the first encoding fail, then with the continue
# keyword will start again with the second encoding
# from the tuple an so on.... until it succeeds.
# if for some reason it reaches the last encoding of
# our tuple without success, then exit the program.
if enc == encodings[-1]:
sys.exit(1)
continue
# now get the absolute path of our filename and append .bak
# to the end of it (for our backup file)
fpath = os.path.abspath(filename)
newfilename = fpath + '.bak'
# and make our backup file with shutil
shutil.copy(filename, newfilename)
# and at last convert it to utf-8
f = open(filename, 'w')
try:
f.write(data.encode('utf-8'))
except Exception(e):
print(e)
finally:
f.close()
def to_lower_case(proot):
"""
Rename all the files in the subfolders of proot to lower case, and
also the subfolder name when it the folder name starts with DLC
"""
# find all dlc defintions in the subfolders
for root, dirs, files in os.walk(proot):
for fname in files:
orig = os.path.join(root, fname)
rename = os.path.join(root, fname.lower())
os.rename(orig, rename)
base = root.split(os.path.sep)[-1]
if base[:3] == 'DLC':
new = root.replace(base, base.lower())
os.rename(root, new)
def read_excel_files(proot, fext='xlsx', pignore=None, sheet=0,
pinclude=None, silent=False):
"""
Read recursively all MS Excel files with extension "fext". Only the
default name for the first sheet (Sheet1) of the Excel file is considered.
Parameters
----------
proot : string
Path that will be recursively explored for the presence of files
that have file extension "fext"
fext : string, default='xlsx'
File extension of the Excel files that should be loaded. Other valid
extensions are csv, xls, and xlsm.
pignore : string, default=None
Specify which string can not occur in the full path of the DLC target.
pinclude : string, default=None
Specify which string has to occur in the full path of the DLC target.
sheet : string or int, default=0
Name or index of the Excel sheet to be considered. By default, the
first sheet (index=0) is taken. Ignored when fext is csv.
df_list : dictionary
A dictionary with the Excel file name (excluding 'fext') as key, and
the corresponding pandas DataFrame as value.
"""
df_list = {}
# find all dlc defintions in the subfolders
for root, dirs, files in os.walk(proot):
for file_name in files:
if not file_name.split('.')[-1] == fext:
continue
f_target = os.path.join(root, file_name)
# if it does not contain pinclude, ignore the dlc
if pinclude is not None and f_target.find(pinclude) < 0:
continue
# if it does contain pignore, ingore the dlc
if pignore is not None and f_target.find(pignore) > -1:
continue
if not silent:
print(f_target, end='')
if fext == 'csv':
df = pd.read_csv(f_target)
else:
df = pd.read_excel(f_target, sheetname=sheet)
df_list[f_target.replace('.'+fext, '')] = df
if not silent:
print(': sucesfully included %i case(s)' % len(df))
if not silent:
print(' XXXXX ERROR COULD NOT READ')
return df_list
def convert_xlsx2csv(fpath, sheet='Sheet1', fext='xlsx'):
"""
Convert xlsx load case definitions to csv so we can track them with git
"""
for root, dirs, files in os.walk(fpath):
for file_name in files:
if not file_name.split('.')[-1] == fext:
continue
fxlsx = os.path.join(root, file_name)
print(fxlsx)
xl = pd.ExcelFile(fxlsx)
df = xl.parse(sheet)
fcsv = fxlsx.replace(fext, 'csv')
df.to_csv(fcsv, sep=';')
def check_df_dict(df_dict):
"""
Verify if the dictionary that needs to be transferred to a Pandas DataFrame
makes sense
Returns
-------
collens : dict
Dictionary with df_dict keys as keys, len(df_dict[key]) as column.
In other words: the length of each column (=rows) of the soon to be df.
for col, values in df_dict.items():
print('%6i : %s' % (len(values), col))
collens[col] = len(values)
return collens
def find_tags(fname):
"""
Find all unqiue tags in a text file.
"""
with open(fname, 'r') as f:
lines = f.readlines()
# regex for finding all tags in a line
regex = re.compile('(\\[.*?\\])')
tags_in_master = {}
for i, line in enumerate(lines):
# are there any tags on this line? Ignore comment AND label section
tags = regex.findall(line.split(';')[0].split('#')[0])
for tag in tags:
try:
tags_in_master[tag].append(i)
except KeyError:
tags_in_master[tag] = [i]
return tags_in_master
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
def read_mathematica_3darray(fname, shape=None, data=None, dtype=None):
"""
I am not sure with which Mathematica command you generate this data,
but this is the format in which I got it.
Parameters
----------
fname : str
shape : tuple, default=None
Tuple with 3 elements, defining the ndarray elements for each of the
axes. Only used when data is set to None.
dtype : dtype, default=None
Is used to set the data dtype when data=None.
data : ndarray, default=None
When None, the data array is created according to shape and dtype.
Returns
-------
data : ndarray
"""
if data is None:
data = np.ndarray(shape, dtype=dtype)
else:
dtype = data.dtype
with open(fname, 'r') as f:
for i, line in enumerate(f.readlines()):
els = line.split('}","{')
for j, row in enumerate(els):
row_ = row.replace('{', '').replace('}', '').replace('"', '')
data[i,j,:] = np.genfromtxt(row_.split(', '), dtype=dtype)
return data
def CDF(series, sort=True):
"""
Cumulative distribution function
================================
Cumulative distribution function of the form:
.. math::
CDF(i) = \\frac{i-0.3}{N - 0.9}
where
i : the index of the sorted item in the series
N : total number of elements in the serie
Series will be sorted first.
Parameters
----------
series : ndarra(N)
sort : bool, default=True
to sort or not to sort
Returns
-------
cdf : ndarray (N,2)
Array with the sorted input series on the first column
and the cumulative distribution function on the second.
"""
N = len(series)
# column array
i_range = np.arange(N)
# convert to row array
x, i_range = np.meshgrid([1], i_range)
# to sort or not to sort the input series
if sort:
series.sort(axis=0)
# convert to row array. Do after sort, otherwise again 1D column array
x, series = np.meshgrid([1], series)
# cdf array
cdf = sp.zeros((N,2))
# calculate the actual cdf values
cdf[:,1] = (i_range[:,0]-0.3)/(float(N)-0.9)
# make sure it is sorted from small to large
if abs(series[0,0]) > abs(series[series.shape[0]-1,0]) and series[0,0] < 0:
# save in new variable, otherwise things go wrong!!
# if we do series[:,0] = series[::-1,0], we get somekind of mirrord
# array
series2 = series[::-1,0]
# x-channel should be on zero for plotting
cdf[:,0] = series2[:]
return cdf
def rebin(hist, bins, nrbins):
"""
Assume within a bin, the values are equally distributed. Only works for
equally spaced bins.
"""
binrange = float(bins[-1] - bins[0])
width = np.diff(bins).mean()
width_ = binrange / float(nrbins)
hist_ = sp.zeros((nrbins))
bins_ = np.linspace(bins[0], bins[-1], num=nrbins+1)
if width_ < width:
raise ValueError('you can only rebin to larger bins')
if not len(hist)+1 == len(bins):
raise ValueError('bins should contain the bin edges')
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
window, j = width, 0
# print('width:', width)
# print('j=0')
for i, k in enumerate(hist):
if window < width_:
hist_[j] += hist[i]#*width
# print('window=%1.04f' % window, end=' ')
# print('(%02i):%1.04f' % (i, hist[i]))
window += width
if i+1 == len(hist):
print()
else:
w_right = (window - width_) / width
w_left = (width - (window - width_)) / width
hist_[j] += hist[i]*w_left
# print('window=%1.04f' % window, end=' ')
# print('(%02i):%1.04f*(%1.02f)' % (i, hist[i], w_left), end=' ')
# print('T: %1.04f' % hist_[j])
if j+1 >= nrbins:
hist_[j] += hist[i]*w_right
print('')
return hist_, bins_
j += 1
# print('j=%i' % j)
# print('window=%1.04f' % window, end=' ')
hist_[j] += hist[i]*w_right
window = w_right*width + width
# print('(%02i):%1.04f*(%1.02f)' % (i, hist[i], w_right))
# print('')
return hist_, bins_
def histfit(hist, bin_edges, xnew):
"""
This should be similar to the Matlab function histfit:
http://se.mathworks.com/help/stats/histfit.html
Based on:
http://nbviewer.ipython.org/url/xweb.geos.ed.ac.uk/~jsteven5/blog/
fitting_distributions_from_percentiles.ipynb
Calculate the CDF of given PDF, and fit a lognorm distribution onto the
CDF. This obviously only works if your PDF is lognorm.
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Parameters
----------
hist : ndarray(n)
bin_edges : ndarray(n+1)
xnew : ndarray(k)
Returns
-------
shape_out
scale_out
pdf_fit : ndarray(k)
"""
# Take the upper edges of the bins. I tried to use the center of the bin
# and the left bin edges, but it works best with the right edges
# It only works ok with x data is positive, force only positive x-data
x_hist = (bin_edges - bin_edges[0])[1:]
y_hist = hist.cumsum()/hist.cumsum().max() # Normalise the cumulative sum
# FIT THE DISTRIBUTION
(shape_out, scale_out), pcov = opt.curve_fit(
lambda xdata, shape, scale: stats.lognorm.cdf(xdata, shape,