Skip to content
Snippets Groups Projects
fuga.py 13.7 KiB
Newer Older
Mads M. Pedersen's avatar
Mads M. Pedersen committed
from numpy import newaxis as na
Mads M. Pedersen's avatar
Mads M. Pedersen committed

from py_wake.deficit_models.deficit_model import DeficitModel, WakeDeficitModel, BlockageDeficitModel
Mads M. Pedersen's avatar
Mads M. Pedersen committed
from py_wake.superposition_models import LinearSum
Mads M. Pedersen's avatar
Mads M. Pedersen committed
from py_wake.utils.fuga_utils import FugaUtils
from py_wake.wind_farm_models.engineering_models import PropagateDownwind, All2AllIterative
from scipy.interpolate import RectBivariateSpline
from py_wake.utils import gradients
from py_wake.utils.gradients import cabs
Mads M. Pedersen's avatar
Mads M. Pedersen committed
class FugaDeficit(WakeDeficitModel, BlockageDeficitModel, FugaUtils):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    args4deficit = ['WS_ilk', 'WS_eff_ilk', 'dw_ijlk', 'hcw_ijlk', 'dh_ijlk', 'h_il', 'ct_ilk', 'D_src_il']
    def __init__(self, LUT_path=tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+00/', remove_wriggles=False,
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                 method='linear', groundModel=None):
        """
        Parameters
        ----------
        LUT_path : str
            Path to folder containing 'CaseData.bin', input parameter file (*.par) and loop-up tables
        remove_wriggles : bool
            The current Fuga loop-up tables have significan wriggles.
            If True, all deficit values after the first zero crossing (when going from the center line
            and out in the lateral direction) is set to zero.
            This means that all speed-up regions are also removed
        """
        DeficitModel.__init__(self, groundModel=groundModel)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        BlockageDeficitModel.__init__(self, upstream_only=True)
        FugaUtils.__init__(self, LUT_path, on_mismatch='input_par')
        self.remove_wriggles = remove_wriggles
        x, y, z, du = self.load()
        err_msg = "Method must be 'linear' or 'spline'. Spline is supports only height level only"
        assert method == 'linear' or (method == 'spline' and len(z) == 1), err_msg

        if method == 'linear':
            self.lut_interpolator = LUTInterpolator(x, y, z, du)
        else:
            du_interpolator = RectBivariateSpline(x, y, du[0].T)

            def interp(xyz):
                x, y, z = xyz
                assert np.all(z == self.z[0]), f'LUT table contains z={self.z} only'
                return du_interpolator.ev(x, y)
            self.lut_interpolator = interp
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def zeta0_factor(self):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        def psim(zeta):
            return self.ams * zeta

        if not self.zeta0 >= 0:  # pragma: no cover
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            # See Colonel.u2b.psim
            raise NotImplementedError
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        return 1 / (1 - (psim(self.zHub * self.invL) - psim(self.zeta0)) / np.log(self.zHub / self.z0))
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def load(self):

        mdUL = self.load_luts(['UL'])[0]
        du = -np.array(mdUL, dtype=np.float32) * self.zeta0_factor()  # minus because it is deficit

        if self.remove_wriggles:
            # remove all positive and negative deficits after first zero crossing in lateral direction
            du *= (np.cumsum(du < 0, 1) == 0)
        # smooth edges to zero
        n = 250
        du[:, :, :n] = du[:, :, n][:, :, na] * np.arange(n) / n
        du[:, :, -n:] = du[:, :, -n][:, :, na] * np.arange(n)[::-1] / n
        n = 50
        du[:, -n:, :] = du[:, -n, :][:, na, :] * np.arange(n)[::-1][na, :, na] / n

        return self.x, self.y, self.z, du
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def interpolate(self, x, y, z):
        # self.grid_interplator(np.array([zyx.flatten() for zyx in [z, y, x]]).T, check_bounds=False).reshape(x.shape)
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def _calc_layout_terms(self, dw_ijlk, hcw_ijlk, h_il, dh_ijlk, D_src_il, **_):
        self.mdu_ijlk = self.interpolate(dw_ijlk, cabs(hcw_ijlk), (h_il[:, na, :, na] + dh_ijlk)) * \
            ~((dw_ijlk == 0) & (hcw_ijlk <= D_src_il[:, na, :, na])  # avoid wake on itself
              )
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def calc_deficit(self, WS_ilk, WS_eff_ilk, dw_ijlk, hcw_ijlk, dh_ijlk, h_il, ct_ilk, D_src_il, **kwargs):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
            self._calc_layout_terms(dw_ijlk, hcw_ijlk, h_il, dh_ijlk, D_src_il, **kwargs)
        return self.mdu_ijlk * (ct_ilk * WS_eff_ilk**2 / WS_ilk)[:, na]
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def wake_radius(self, D_src_il, dw_ijlk, **_):
        return np.zeros_like(dw_ijlk) + D_src_il[:, na, :, na]
Mads M. Pedersen's avatar
Mads M. Pedersen committed

Mads M. Pedersen's avatar
Mads M. Pedersen committed
class FugaYawDeficit(FugaDeficit):
    args4deficit = ['WS_ilk', 'WS_eff_ilk', 'dw_ijlk', 'hcw_ijlk', 'dh_ijlk', 'h_il', 'ct_ilk', 'D_src_il', 'yaw_ilk']

    def __init__(self, LUT_path=tfp + 'fuga/2MW/Z0=0.00408599Zi=00400Zeta0=0.00E+00/',
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                 remove_wriggles=False, method='linear', groundModel=None):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        """
        Parameters
        ----------
        LUT_path : str
            Path to folder containing 'CaseData.bin', input parameter file (*.par) and loop-up tables
        remove_wriggles : bool
            The current Fuga loop-up tables have significan wriggles.
            If True, all deficit values after the first zero crossing (when going from the center line
            and out in the lateral direction) is set to zero.
            This means that all speed-up regions are also removed
        """
        DeficitModel.__init__(self, groundModel=groundModel)
        BlockageDeficitModel.__init__(self, upstream_only=True)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        FugaUtils.__init__(self, LUT_path, on_mismatch='input_par')
        self.remove_wriggles = remove_wriggles
        x, y, z, dUL = self.load()

        mdUT = self.load_luts(['UT'])[0]
        dUT = np.array(mdUT, dtype=np.float32) * self.zeta0_factor()
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        dU = np.concatenate([dUL[:, :, :, na], dUT[:, :, :, na]], 3)
        err_msg = "Method must be 'linear' or 'spline'. Spline is supports only height level only"
        assert method == 'linear' or (method == 'spline' and len(z) == 1), err_msg

        if method == 'linear':
            self.lut_interpolator = LUTInterpolator(x, y, z, dU)
        else:
            UL_interpolator = RectBivariateSpline(x, y, dU[0, :, :, 0].T)
            UT_interpolator = RectBivariateSpline(x, y, dU[0, :, :, 1].T)

            def interp(xyz):
                x, y, z = xyz
                assert np.all(z == self.z[0]), f'LUT table contains z={self.z} only'
                return np.moveaxis([UL_interpolator.ev(x, y), UT_interpolator.ev(x, y)], 0, -1)
            self.lut_interpolator = interp
Mads M. Pedersen's avatar
Mads M. Pedersen committed

    def _calc_layout_terms(self, dw_ijlk, hcw_ijlk, h_il, dh_ijlk, D_src_il, **_):
        self.mdu_ijlk = (self.interpolate(dw_ijlk, cabs(hcw_ijlk), (h_il[:, na, :, na] + dh_ijlk)) *
                         ~((dw_ijlk == 0) & (hcw_ijlk <= D_src_il[:, na, :, na]))[..., na]  # avoid wake on itself
                         )

    def calc_deficit_downwind(self, WS_ilk, WS_eff_ilk, dw_ijlk, hcw_ijlk,
                              dh_ijlk, h_il, ct_ilk, D_src_il, yaw_ilk, **_):
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        mdUL_ijlk, mdUT_ijlk = np.moveaxis(self.interpolate(
            dw_ijlk, cabs(hcw_ijlk), (h_il[:, na, :, na] + dh_ijlk)), -1, 0)
        mdUT_ijlk = np.negative(mdUT_ijlk, out=mdUT_ijlk, where=hcw_ijlk < 0)  # UT is antisymmetric
        theta_ilk = np.deg2rad(yaw_ilk)
        mdu_ijlk = (mdUL_ijlk * np.cos(theta_ilk)[:, na] - mdUT_ijlk * np.sin(theta_ilk)[:, na])
        # avoid wake on itself
        mdu_ijlk *= ~((dw_ijlk == 0) & (hcw_ijlk <= D_src_il[:, na, :, na]))
Mads M. Pedersen's avatar
Mads M. Pedersen committed

        return mdu_ijlk * (ct_ilk * WS_eff_ilk**2 / WS_ilk)[:, na]

    def calc_deficit(self, **kwargs):
        # fuga result is already downwind
        return self.calc_deficit_downwind(**kwargs)

Mads M. Pedersen's avatar
Mads M. Pedersen committed

class LUTInterpolator(object):
    # Faster than scipy.interpolate.interpolate.RegularGridInterpolator
    def __init__(self, x, y, z, V):
        self.x = x
        self.y = y
        self.z = z
        self.V = V
        self.nx = nx = len(x)
        self.ny = ny = len(y)
        self.nz = nz = len(z)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        assert V.shape[:3] == (nz, ny, nx)
        self.dx, self.dy = [xy[1] - xy[0] for xy in [x, y]]

        self.x0 = x[0]
        self.y0 = y[0]

        Ve = np.concatenate((V, V[-1:]), 0)
        Ve = np.concatenate((Ve, Ve[:, -1:]), 1)
        Ve = np.concatenate((Ve, Ve[:, :, -1:]), 2)

        self.V000 = np.array([V,
                              Ve[:-1, :-1, 1:],
                              Ve[:-1, 1:, :-1],
                              Ve[:-1, 1:, 1:],
                              Ve[1:, :-1, :-1],
                              Ve[1:, :-1, 1:],
                              Ve[1:, 1:, :-1],
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                              Ve[1:, 1:, 1:]])
        if V.shape == (nz, ny, nx, 2):
            # Both UL and UT
            self.V000 = self.V000.reshape((8, nz * ny * nx, 2))
        else:
            self.V000 = self.V000.reshape((8, nz * ny * nx))
        xp = np.maximum(np.minimum(xp, self.x[-1]), self.x[0])
        yp = np.maximum(np.minimum(yp, self.y[-1]), self.y[0])
        xif, xi0 = gradients.modf((xp - self.x0) / self.dx)
        yif, yi0 = gradients.modf((yp - self.y0) / self.dy)
        zif, zi0 = gradients.modf(gradients.interp(zp, self.z, np.arange(self.nz)))
        idx = zi0 * nx * ny + yi0 * nx + xi0
        v000, v001, v010, v011, v100, v101, v110, v111 = self.V000[:, idx]
Mads M. Pedersen's avatar
Mads M. Pedersen committed
        if len(self.V000.shape) == 3:
            # Both UL and UT
            xif = xif[..., na]
            yif = yif[..., na]
            zif = zif[..., na]
        v_00 = v000 + (v100 - v000) * zif
        v_01 = v001 + (v101 - v001) * zif
        v_10 = v010 + (v110 - v010) * zif
        v_11 = v011 + (v111 - v011) * zif
        v__0 = v_00 + (v_10 - v_00) * yif
        v__1 = v_01 + (v_11 - v_01) * yif

        return (v__0 + (v__1 - v__0) * xif)
#         # Slightly slower
#         xif1, yif1, zif1 = 1 - xif, 1 - yif, 1 - zif
#         w = np.array([xif1 * yif1 * zif1,
#                       xif * yif1 * zif1,
#                       xif1 * yif * zif1,
#                       xif * yif * zif1,
#                       xif1 * yif1 * zif,
#                       xif * yif1 * zif,
#                       xif1 * yif * zif,
#                       xif * yif * zif])
#
#         return np.sum(w * self.V01[:, zi0, yi0, xi0], 0)


    def __init__(self, LUT_path, site, windTurbines,
Mads M. Pedersen's avatar
Mads M. Pedersen committed
                 rotorAvgModel=None, deflectionModel=None, turbulenceModel=None, remove_wriggles=False):
        """
        Parameters
        ----------
        LUT_path : str
            path to look up tables
        site : Site
            Site object
        windTurbines : WindTurbines
            WindTurbines object representing the wake generating wind turbines
        rotorAvgModel : RotorAvgModel
            Model defining one or more points at the down stream rotors to
            calculate the rotor average wind speeds from.\n
            Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only
        deflectionModel : DeflectionModel
            Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
        turbulenceModel : TurbulenceModel
            Model describing the amount of added turbulence in the wake
        """
        PropagateDownwind.__init__(self, site, windTurbines,
                                   wake_deficitModel=FugaDeficit(LUT_path, remove_wriggles=remove_wriggles),
                                   rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(),
                                   deflectionModel=deflectionModel, turbulenceModel=turbulenceModel)


class FugaBlockage(All2AllIterative):
Mads M. Pedersen's avatar
Mads M. Pedersen committed
    def __init__(self, LUT_path, site, windTurbines, rotorAvgModel=None,
                 deflectionModel=None, turbulenceModel=None, convergence_tolerance=1e-6, remove_wriggles=False):
        """
        Parameters
        ----------
        LUT_path : str
            path to look up tables
        site : Site
            Site object
        windTurbines : WindTurbines
            WindTurbines object representing the wake generating wind turbines
        rotorAvgModel : RotorAvgModel
            Model defining one or more points at the down stream rotors to
            calculate the rotor average wind speeds from.\n
            Defaults to RotorCenter that uses the rotor center wind speed (i.e. one point) only
        deflectionModel : DeflectionModel
            Model describing the deflection of the wake due to yaw misalignment, sheared inflow, etc.
        turbulenceModel : TurbulenceModel
            Model describing the amount of added turbulence in the wake
        """
        fuga_deficit = FugaDeficit(LUT_path, remove_wriggles=remove_wriggles)
        All2AllIterative.__init__(self, site, windTurbines, wake_deficitModel=fuga_deficit,
                                  rotorAvgModel=rotorAvgModel, superpositionModel=LinearSum(),
                                  deflectionModel=deflectionModel, blockage_deficitModel=fuga_deficit,
                                  turbulenceModel=turbulenceModel, convergence_tolerance=convergence_tolerance)
Mads M. Pedersen's avatar
Mads M. Pedersen committed
def main():
    if __name__ == '__main__':
        from py_wake.examples.data.iea37._iea37 import IEA37Site
        from py_wake.examples.data.iea37._iea37 import IEA37_WindTurbines
        site = IEA37Site(16)
        x, y = site.initial_position.T
        windTurbines = IEA37_WindTurbines()
        path = tfp + 'fuga/2MW/Z0=0.03000000Zi=00401Zeta0=0.00E+00/'
        for wf_model in [Fuga(path, site, windTurbines),
                         FugaBlockage(path, site, windTurbines)]:
            plt.figure()
            print(wf_model)
            aep = sim_res.aep().sum()

            # plot wake map
            flow_map = sim_res.flow_map(wd=30, ws=9.8)
            flow_map.plot_wake_map()
            flow_map.plot_windturbines()
            plt.title('AEP: %.2f GWh' % aep)
            plt.show()