Newer
Older
'''
Created on 24/06/2016
@author: MMPE
'''
import numpy as np
import unittest
from wetb.utils.geometry import rpm2rads
from _collections import deque
from tables.tests.test_index_backcompat import Indexes2_0TestCase
from wetb.signal.filters._differentiation import differentiation
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def power_mean(power, trigger_indexes, I, rotor_speed, time, air_density=1.225, rotor_speed_mean_samples=1) :
"""Calculate the density normalized mean power, taking acceleration of the rotor into account
Parameters
---------
Power : array_like
Power [W]
trigger_indexes : array_like
Trigger indexes
I : float
Rotor inerti [kg m^2]
rotor_speed : array_like
Rotor speed [rad/s]
time : array_like
time [s]
air_density : int, float or array_like, optional
Air density.
rotor_speed_mean_samples : int
To reduce the effect of noise, the mean of a number of rotor speed samples can be used
Returns
-------
mean power including power used to (de)accelerate rotor
Examples:
---------
turbine_power_mean = lambda power, triggers : power_mean(power, triggers, I=2.5E7, rot_speed, time, rho)
trigger_indexes = time_trigger(time,30)
wsp_mean, power_mean = subset_mean([wsp, power],trigger_indexes,mean_func={1:turbine_power_mean})
"""
if rotor_speed_mean_samples == 1:
rs1 = rotor_speed[trigger_indexes[:-1]]
rs2 = rotor_speed[trigger_indexes[1:] - 1]
else:
rs = np.array([rotor_speed[max(i - rotor_speed_mean_samples, 0):i - 1 + rotor_speed_mean_samples].mean() for i in trigger_indexes])
rs1 = rs[:-1]
rs2 = rs[1:]
power = np.array([np.nanmean(power[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())])
if isinstance(air_density, (int, float)):
if air_density != 1.225:
power = power / air_density * 1.225
else:
air_density = np.array([np.nanmean(air_density[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())])
power = power / air_density * 1.225
return power + 1 / 2 * I * (rs2 ** 2 - rs1 ** 2) / (time[trigger_indexes[1:] - 1] - time[trigger_indexes[:-1]])
def power_mean_func_kW(I, rotor_speed, time, air_density=1.225, rotor_speed_mean_samples=1) :
"""Return a power mean function [kW] used to Calculate the density normalized mean power, taking acceleration of the rotor into account
Parameters
---------
I : float
Rotor inerti [kg m^2]
rotor_speed : array_like
Rotor speed [rad/s]
time : array_like
time [s]
air_density : int, float or array_like, optional
Air density.
rotor_speed_mean_samples : int
To reduce the effect of noise, the mean of a number of rotor speed samples can be used
Returns
-------
mean power function
Examples:
---------
turbine_power_mean = power_mean_func_kW(power, triggers, I=2.5E7, rot_speed, time, rho)
trigger_indexes = time_trigger(time,30)
wsp_mean, power_mean = subset_mean([wsp, power],trigger_indexes,mean_func={1:turbine_power_mean})
"""
def mean_power(power, trigger_indexes):
return power_mean(power * 1000, trigger_indexes, I, rotor_speed, time , air_density, rotor_speed_mean_samples) / 1000
return mean_power
def subset_mean(data, trigger_indexes, mean_func={}):
if isinstance(data, list):
data = np.array(data).T
if len(data.shape)==1:
no_sensors = 1
else:
no_sensors = data.shape[1]
if isinstance(trigger_indexes[0], tuple):
triggers = np.array(trigger_indexes)
steps = np.diff(triggers[:, 0])
lengths = np.diff(triggers)[:, 0]
if np.all(steps == steps[0]) and np.all(lengths == lengths[0]):
subset_mean = np.mean(np.r_[data.reshape(data.shape[0],no_sensors),np.empty((steps[0],no_sensors))+np.nan][triggers[0][0]:triggers.shape[0] * steps[0] + triggers[0][0]].reshape(triggers.shape[0], steps[0], no_sensors)[:, :lengths[0]], 1)
else:
subset_mean = np.array([np.mean(data[i1:i2], 0) for i1, i2 in trigger_indexes])
for index, func in mean_func.items():
att = data[:, index]
subset_mean[:, index] = func(att, trigger_indexes)
else:
steps = np.diff(trigger_indexes)
if np.all(steps == steps[0]):
#equal distance
subset_mean = np.mean(data[trigger_indexes[0]:trigger_indexes[-1]].reshape([ len(trigger_indexes) - 1, steps[0], data.shape[1]]), 1)
else:
subset_mean = np.array([np.mean(data[i1:i2], 0) for i1, i2 in zip(trigger_indexes[:-1].tolist(), trigger_indexes[1:].tolist())])
for index, func in mean_func.items():
att = data[:, index]
subset_mean[:, index] = func(att, trigger_indexes)
if len(data.shape)==1 and len(subset_mean.shape)==2:
return subset_mean[:,0]
else:
return subset_mean
def cycle_trigger(values, trigger_value=None, step=1, ascending=True, tolerance=0):
values = np.array(values)
if trigger_value is None:
r = values.max() - values.min()
values = (values[:] - r / 2) % r
trigger_value = r / 2
if ascending:
return np.where((values[1:] > trigger_value + tolerance) & (values[:-1] <= trigger_value - tolerance))[0][::step]
else:
return np.where((values[1:] < trigger_value - tolerance) & (values[:-1] >= trigger_value + tolerance))[0][::step]
def revolution_trigger(rotor_position, sample_frq, rotor_speed, max_rev_diff=1, plt=None):
"""Returns one index per revolution (minimum rotor position)
Parameters
----------
rotor_position : array_like
Rotor position [deg] (0-360)
sample_frq : int or float
Sample frequency [Hz]
rotor_speed : array_like
Rotor speed [RPM]
Returns
-------
nd_array : Array of indexes
"""
if isinstance(rotor_speed, (float, int)):
rotor_speed = np.ones_like(rotor_position)*rotor_speed
deg_per_sample = rotor_speed*360/60/sample_frq
thresshold = deg_per_sample.max()*3
drp = (np.diff(rotor_position)+thresshold)%360-thresshold
rp[np.r_[False, np.diff(rp)>thresshold]] = 180
upper_indexes = np.where((rp[:-1]>(360-thresshold))&(rp[1:]<(360-thresshold)))[0]
lower_indexes = np.where((rp[:-1]>thresshold)&(rp[1:]<thresshold))[0] +1
if plt:
plt.plot(rp)
plt.plot(lower_indexes, rp[lower_indexes],'.')
plt.plot(upper_indexes, rp[upper_indexes],'.')
# Best lower is the first lower after upper
best_lower = lower_indexes[np.searchsorted(lower_indexes, upper_indexes)]
upper2lower = best_lower - upper_indexes
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
trigger_indexes = best_lower[upper2lower<upper2lower.mean()*2].tolist()
if len(trigger_indexes)>1:
rpm_rs = np.array([rev.mean() for rev in np.split(rotor_speed, trigger_indexes)[1:-1]])
rpm_i = 1/np.diff(trigger_indexes)*60*sample_frq
spr_rs = np.array([rev.mean() for rev in np.split(1/rotor_speed*60*sample_frq, trigger_indexes)[1:-1]])
spr_i = np.diff(trigger_indexes)
while np.any(spr_rs>spr_i*1.9):
i = np.where(spr_rs>spr_i*1.9)[0][0]
if np.abs(spr_i[i-1] + spr_i[i] - spr_rs[i])< np.abs(spr_i[i] + spr_i[i+1] - spr_rs[i]):
del trigger_indexes[i]
else:
del trigger_indexes[i+1]
spr_i = np.diff(trigger_indexes)
spr_rs = np.array([rev.mean() for rev in np.split(1/rotor_speed*60*sample_frq, trigger_indexes)[1:-1]])
# if a revolution is too long add trigger
if np.any(rpm_rs>rpm_i*2.1):
# >1 missing triggers
raise NotImplementedError
trigger_indexes.extend([np.mean(trigger_indexes[i:i+2]) for i in np.where(rpm_rs>rpm_i*1.9)[0]])
trigger_indexes = np.sort(trigger_indexes).astype(np.int)
i1,i2 = trigger_indexes[0], trigger_indexes[-1]
nround_rotor_speed = np.nansum(rotor_speed[i1:i2]/60/sample_frq)
#mod = [v for v in [5,10,30,60,90] if v>thresshold][0]
nround_rotor_position = len(trigger_indexes)-1 #np.nansum(np.diff(rotor_position[i1:i2])%mod)/360
if max_rev_diff is not None:
diff_pct = abs(nround_rotor_position-nround_rotor_speed)/nround_rotor_position*100
assert diff_pct<max_rev_diff, "No of revolution mismatch: rotor_position (%d), rotor_speed (%.1f), diff %.1f%%"%(nround_rotor_position, nround_rotor_speed, diff_pct)
return trigger_indexes
def revolution_trigger_old(values, rpm_dt=None, dmin=5, dmax=10, ):
"""Return indexes where values are > max(values)-dmin and decreases more than dmax
If RPM and time step is provided, triggers steps < time of 1rpm is removed
Parameters
---------
values : array_like
Position signal (e.g. rotor position)
rpm_dt : tuple(array_like, float), optional
- rpm : RPM signal
- dt : time step between samples
dmin : int or float, optional
Minimum normal position increase between samples
dmax : float or int, optional
Maximum normal position increase between samples
Returns
-------
trigger indexes
[i1,i2,...,in] if rpm_dt is not provided
[(start1,stop1),(start2,stop2),...,(startn, stopn)] if rpm_dt is provided
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
values = np.array(values)
indexes = np.where((np.diff(values)<-dmax)&(values[:-1]>values.max()-dmax))[0]
if rpm_dt is None:
return indexes
else:
index_pairs = []
rpm, dt = rpm_dt
d_deg = rpm *360/60*dt
cum_d_deg = np.cumsum(d_deg)
lbound, ubound = values.max()-dmax, values.max()+dmax
index_pairs = [(i1,i2) for i1,i2, deg in zip(indexes[:-1], indexes[1:], cum_d_deg[indexes[1:]-1]-cum_d_deg[indexes[:-1]])
if deg > lbound and deg<ubound]
return index_pairs
def time_trigger(time, step, start=None, stop=None):
if start is None:
start = time[0]
decimals = int(np.ceil(np.log10(1 / np.nanmin(np.diff(time)))))
time = np.round(time - start, decimals)
steps = np.round(np.diff(time), decimals)
if np.sum(steps == steps[0])/len(time)>.99: #np.all(steps == steps[0]):
# equal time step
time = np.r_[time, time[-1] + max(set(steps), key=list(steps).count)]
if stop is None:
stop = time[~np.isnan(time)][-1]
else:
stop -= start
epsilon = 10 ** -(decimals + 2)
return np.where(((time % step < epsilon) | (time % step > step - epsilon)) & (time >= 0) & (time <= stop))[0]
def non_nan_index_trigger(sensor, step):
trigger = []
i = 0
nan_indexes = deque(np.where(np.isnan(sensor))[0].tolist() + [len(sensor)])
while i + step <= sensor.shape[0]:
if i+step<=nan_indexes[0]:
trigger.append((i,i+step))
i+=step
else:
i = nan_indexes.popleft()+1
return trigger