Newer
Older
# DLL : 2 inpvec : 4 mgen hss
# description case 3
# 0 1 2 4
# hawc_dll :echo outvec : 1
# case 3
if items[1][0] == ':echo':
# hawc_dll named case (case 3) is polluted with colons
items = items.split(' ')
items = misc.remove_items(items, '')
dll = items[1]
io = items[2]
io_nr = items[3]
sensortag = ''
# case 2: no reference to dll name
elif self.ch_details[ch,2].startswith('DLL'):
dll = items[2]
io = items[3]
io_nr = items[5]
sensortag = ' '.join(items[6:])
# and tag it
tag = 'DLL-%s-%s-%s' % (dll,io,io_nr)
# case 1: type2 dll name is given
else:
dll = items[0]
io = items[1]
io_nr = items[2]
sensortag = ' '.join(items[3:])
# save all info in the dict
channelinfo = {}
channelinfo['dll'] = dll
channelinfo['io'] = io
channelinfo['io_nr'] = io_nr
channelinfo['chi'] = ch
channelinfo['sensortag'] = sensortag
# -----------------------------------------------------------------
# BEARING OUTPUS
# bea1 angle_speed rpm shaft_nacelle angle speed
elif self.ch_details[ch, 0].startswith('bea'):
output_type = self.ch_details[ch, 0].split(' ')[1]
# there is no label option for the bearing output
# and tag it
tag = 'bearing-%s-%s-%s' % (bearing_name, output_type, units)
# save all info in the dict
channelinfo = {}
channelinfo['bearing_name'] = bearing_name
channelinfo['output_type'] = output_type
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# AERO CL, CD, CM, VREL, ALFA, LIFT, DRAG, etc
# Cl, R= 0.5 deg Cl of blade 1 at radius 0.49
# Azi 1 deg Azimuth of blade 1
elif self.ch_details[ch, 0].split(',')[0] in ch_aero:
dscr_list = self.ch_details[ch, 2].split(' ')
dscr_list = misc.remove_items(dscr_list, '')
radius = dscr_list[-1]
# is this always valid?
# sometimes the units for aero sensors are wrong!
# there is no label option
# and tag it
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# for the induction grid over the rotor
# a_grid, azi 0.00 r 1.74
elif self.ch_details[ch, 0].split(',')[0] in ch_aerogrid:
items = self.ch_details[ch, 0].split(',')
sensortype = items[0]
items2 = items[1].split(' ')
items2 = misc.remove_items(items2, '')
azi = items2[1]
radius = items2[3]
# and tag it
tag = '%s-azi-%s-r-%s' % (sensortype,azi,radius)
# save all info in the dict
channelinfo = {}
channelinfo['sensortype'] = sensortype
channelinfo['radius'] = float(radius)
channelinfo['azimuth'] = float(azi)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# INDUCTION AT THE BLADE
# 0: Induc. Vz, rpco, R= 1.4
# 1: m/s
# 2: Induced wsp Vz of blade 1 at radius 1.37, RP. coo.
# Induc. Vx, locco, R= 1.4 // Induced wsp Vx of blade 1 at radius 1.37, local ae coo.
# Induc. Vy, blco, R= 1.4 // Induced wsp Vy of blade 1 at radius 1.37, local bl coo.
# Induc. Vz, glco, R= 1.4 // Induced wsp Vz of blade 1 at radius 1.37, global coo.
# Induc. Vx, rpco, R= 8.4 // Induced wsp Vx of blade 1 at radius 8.43, RP. coo.
elif self.ch_details[ch, 0].strip()[:5] == 'Induc':
items = self.ch_details[ch, 2].split(' ')
items = misc.remove_items(items, '')
blade_nr = int(items[5])
radius = float(items[8].replace(',', ''))
coord = items[1].strip()
component = items[0][-2:]
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
# and tag it
rpl = (coord, blade_nr, component, radius)
tag = 'induc-%s-blade-%1i-%s-r-%03.02f' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['blade_nr'] = blade_nr
channelinfo['sensortype'] = 'induction'
channelinfo['radius'] = radius
channelinfo['coord'] = coord
channelinfo['component'] = component
channelinfo['units'] = units
channelinfo['chi'] = ch
# TODO: wind speed
# some spaces have been trimmed here
# WSP gl. coo.,Vy m/s
# // Free wind speed Vy, gl. coo, of gl. pos 0.00, 0.00, -2.31
# WSP gl. coo.,Vdir_hor deg
# Free wind speed Vdir_hor, gl. coo, of gl. pos 0.00, 0.00, -2.31
# -----------------------------------------------------------------
# WATER SURFACE gl. coo, at gl. coo, x,y= 0.00, 0.00
elif self.ch_details[ch, 2].startswith('Water'):
units = self.ch_details[ch, 1]
# but remove the comma
x = items[-2][:-1]
y = items[-1]
# and tag it
tag = 'watersurface-global-%s-%s' % (x, y)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (float(x), float(y))
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# WIND SPEED
# WSP gl. coo.,Vx
elif self.ch_details[ch, 0].startswith('WSP gl.'):
units = self.ch_details[ch, 1]
direction = self.ch_details[ch, 0].split(',')[1]
tmp = self.ch_details[ch, 2].split('pos')[1]
x, y, z = tmp.split(',')
x, y, z = x.strip(), y.strip(), z.strip()
# and tag it
tag = 'windspeed-global-%s-%s-%s-%s' % (direction, x, y, z)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = 'global'
channelinfo['pos'] = (x, y, z)
channelinfo['units'] = units
channelinfo['chi'] = ch
# WIND SPEED AT BLADE
# 0: WSP Vx, glco, R= 61.5
# 2: Wind speed Vx of blade 1 at radius 61.52, global coo.
elif self.ch_details[ch, 0].startswith('WSP V'):
units = self.ch_details[ch, 1].strip()
direction = self.ch_details[ch, 0].split(' ')[1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()[:2]
radius = self.ch_details[ch, 2].split('radius')[1].split(',')[0]
coord = self.ch_details[ch, 2].split(',')[1].strip()
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
rpl = (direction, blade_nr, radius, coord)
tag = 'wsp-blade-%s-%s-%s-%s' % rpl
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['direction'] = direction
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['radius'] = float(radius)
channelinfo['units'] = units
channelinfo['chi'] = ch
# FLAP ANGLE
# 2: Flap angle for blade 3 flap number 1
elif self.ch_details[ch, 0][:7] == 'setbeta':
units = self.ch_details[ch, 1].strip()
blade_nr = self.ch_details[ch, 2].split('blade')[1].strip()
blade_nr = blade_nr.split(' ')[0].strip()
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
radius = radius.strip()
blade_nr = blade_nr.strip()
# and tag it
tag = 'setbeta-bladenr-%s-flapnr-%s' % (blade_nr, flap_nr)
# save all info in the dict
channelinfo = {}
channelinfo['coord'] = coord
channelinfo['flap_nr'] = int(flap_nr)
channelinfo['blade_nr'] = int(blade_nr)
channelinfo['units'] = units
channelinfo['chi'] = ch
# -----------------------------------------------------------------
# ignore all the other cases we don't know how to deal with
else:
# if we get here, we don't have support yet for that sensor
# and hence we can't save it. Continue with next channel
continue
# -----------------------------------------------------------------
# ignore if we have a non unique tag
if tag in self.ch_dict:
jj = 1
while True:
tag_new = tag + '_v%i' % jj
if tag_new in self.ch_dict:
jj += 1
else:
tag = tag_new
break
# msg = 'non unique tag for HAWC2 results, ignoring: %s' % tag
# logging.warn(msg)
# else:
self.ch_dict[tag] = copy.copy(channelinfo)
# -----------------------------------------------------------------
# save in for DataFrame format
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (self.cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(tag)
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _ch_dict2df(self):
"""
Create a DataFrame version of the ch_dict, and the chi columns is
set as the index
"""
# identify all the different columns
cols = set()
for ch_name, channelinfo in self.ch_dict.items():
cols.update(set(channelinfo.keys()))
df_dict['unique_ch_name'] = []
for ch_name, channelinfo in self.ch_dict.items():
cols_ch = set(channelinfo.keys())
for col in cols_ch:
df_dict[col].append(channelinfo[col])
# the remainder columns we have not had yet. Fill in blank
for col in (cols - cols_ch):
df_dict[col].append('')
df_dict['unique_ch_name'].append(ch_name)
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
self.ch_df = pd.DataFrame(df_dict)
self.ch_df.set_index('chi', inplace=True)
def _data_window(self, nr_rev=None, time=None):
"""
Based on a time interval, create a proper slice object
======================================================
The window will start at zero and ends with the covered time range
of the time input.
Paramters
---------
nr_rev : int, default=None
NOT IMPLEMENTED YET
time : list, default=None
time = [time start, time stop]
Returns
-------
slice_
window
zoomtype
time_range
time_range = [0, time[1]]
"""
# -------------------------------------------------
# determine zome range if necesary
# -------------------------------------------------
time_range = None
if nr_rev:
raise NotImplementedError
# input is a number of revolutions, get RPM and sample rate to
# calculate the required range
# TODO: automatich detection of RPM channel!
time_range = nr_rev/(self.rpm_mean/60.)
# convert to indices instead of seconds
i_range = int(self.Freq*time_range)
window = [0, time_range]
# in case the first datapoint is not at 0 seconds
slice_ = np.r_[i_zero:i_range+i_zero]
zoomtype = '_nrrev_' + format(nr_rev, '1.0f') + 'rev'
elif time.any():
time_range = time[1] - time[0]
i_start = int(time[0]*self.Freq)
i_end = int(time[1]*self.Freq)
slice_ = np.r_[i_start:i_end]
window = [time[0], time[1]]
return slice_, window, zoomtype, time_range
# TODO: general signal method, this is not HAWC2 specific, move out
stats = {}
# calculate the statistics values:
stats['max'] = sig[i0:i1, :].max(axis=0)
stats['min'] = sig[i0:i1, :].min(axis=0)
stats['mean'] = sig[i0:i1, :].mean(axis=0)
stats['std'] = sig[i0:i1, :].std(axis=0)
stats['range'] = stats['max'] - stats['min']
stats['absmax'] = np.absolute(sig[i0:i1, :]).max(axis=0)
stats['rms'] = np.sqrt(np.mean(sig[i0:i1, :]*sig[i0:i1, :], axis=0))
stats['int'] = integrate.trapz(sig[i0:i1, :], x=sig[i0:i1, 0], axis=0)
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
def statsdel_df(self, i0=0, i1=None, statchans='all', delchans='all',
m=[3, 4, 6, 8, 10, 12], neq=None, no_bins=46):
"""Calculate statistics and equivalent loads for the current loaded
signal.
Parameters
----------
i0 : int, default=0
i1 : int, default=None
channels : list, default='all'
all channels are selected if set to 'all', otherwise define a list
using the unique channel defintions.
neq : int, default=1
no_bins : int, default=46
Return
------
statsdel : pd.DataFrame
Pandas DataFrame with the statistical parameters and the different
fatigue coefficients as columns, and channels as rows. As index the
unique channel name is used.
"""
stats = ['max', 'min', 'mean', 'std', 'range', 'absmax', 'rms', 'int']
if statchans == 'all':
statchans = self.ch_df['unique_ch_name'].tolist()
statchis = self.ch_df['unique_ch_name'].index.values
else:
sel = self.ch_df['unique_ch_name']
statchis = self.ch_df[sel.isin(statchans)].index.values
if delchans == 'all':
delchans = self.ch_df['unique_ch_name'].tolist()
delchis = self.ch_df.index.values
else:
sel = self.ch_df['unique_ch_name']
delchis = self.ch_df[sel.isin(delchans)].index.values
# delchans has to be a subset of statchans!
if len(set(delchans) - set(statchans)) > 0:
raise ValueError('delchans has to be a subset of statchans')
tmp = np.ndarray((len(statchans), len(stats+m)))
tmp[:,:] = np.nan
m_cols = ['m=%i' % m_ for m_ in m]
statsdel = pd.DataFrame(tmp, columns=stats+m_cols)
statsdel.index = statchans
datasel = self.sig[i0:i1,statchis]
time = self.sig[i0:i1,0]
statsdel['max'] = datasel.max(axis=0)
statsdel['min'] = datasel.min(axis=0)
statsdel['mean'] = datasel.mean(axis=0)
statsdel['std'] = datasel.std(axis=0)
statsdel['range'] = statsdel['max'] - statsdel['min']
statsdel['absmax'] = np.abs(datasel).max(axis=0)
statsdel['rms'] = np.sqrt(np.mean(datasel*datasel, axis=0))
statsdel['int'] = integrate.trapz(datasel, x=time, axis=0)
statsdel['intabs'] = integrate.trapz(np.abs(datasel), x=time, axis=0)
if neq is None:
neq = self.sig[-1,0] - self.sig[0,0]
for chi, chan in zip(delchis, delchans):
signal = self.sig[i0:i1,chi]
eq = self.calc_fatigue(signal, no_bins=no_bins, neq=neq, m=m)
statsdel.loc[chan][m_cols] = eq
return statsdel
# TODO: general signal method, this is not HAWC2 specific, move out
def calc_fatigue(self, signal, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1):
"""
Parameters
----------
signal: 1D array
One dimentional array containing the signal.
no_bins: int
Number of bins for the binning of the amplitudes.
m: list
Values of the slope of the SN curve.
neq: int
Number of equivalent cycles
Returns
-------
eq: list
Damage equivalent loads for each m value.
return eq_load(signal, no_bins=no_bins, m=m, neq=neq)[0]
def blade_deflection(self):
"""
"""
# select all the y deflection channels
db = misc.DictDB(self.ch_dict)
db.search({'sensortype': 'state pos', 'component': 'z'})
# sort the keys and save the mean values to an array/list
chiz, zvals = [], []
for key in sorted(db.dict_sel.keys()):
zvals.append(-self.sig[:, db.dict_sel[key]['chi']].mean())
chiz.append(db.dict_sel[key]['chi'])
# sort the keys and save the mean values to an array/list
chiy, yvals = [], []
for key in sorted(db.dict_sel.keys()):
yvals.append(self.sig[:, db.dict_sel[key]['chi']].mean())
chiy.append(db.dict_sel[key]['chi'])
return np.array(zvals), np.array(yvals)

David Verelst
committed
def save_chan_names(self, fname):
"""Save unique channel names to text file.
"""
channels = self.ch_df.ch_name.values
channels.sort()
np.savetxt(fname, channels, fmt='%-100s')
def save_channel_info(self, fname):
"""Save all channel info: unique naming + HAWC2 description from *.sel.
"""
p1 = self.ch_df.copy()
# but ignore the units column, we already have that
p2 = pd.DataFrame(self.ch_details,
columns=['Description1', 'units', 'Description2'])
# merge on the index
tmp = pd.merge(p1, p2, right_index=True, how='outer', left_index=True)
tmp.to_excel(fname)
# for a fixed-with text format instead of csv
# header = ''.join(['%100s' % k for k in tmp.columns])
# header = ' windspeed' + header
# np.savetxt(fname, tmp.to_records(), header=header,
# fmt='% 01.06e ')
return tmp

David Verelst
committed
def load_chan_names(self, fname):
dtype = np.dtype('U100')
return np.genfromtxt(fname, dtype=dtype, delimiter=';').tolist()
def save_csv(self, fname, fmt='%.18e', delimiter=','):
"""
Save to csv and use the unified channel names as columns
"""
map_sorting = {}
# first, sort on channel index
for ch_key, ch in self.ch_dict.items():
map_sorting[ch['chi']] = ch_key
header = []
# not all channels might be present...iterate again over map_sorting
for chi in map_sorting:
try:
sensortag = self.ch_dict[map_sorting[chi]]['sensortag']
header.append(map_sorting[chi] + ' // ' + sensortag)
except:
header.append(map_sorting[chi])
# and save
print('saving...', end='')
np.savetxt(fname, self.sig[:, list(map_sorting.keys())], fmt=fmt,
delimiter=delimiter, header=delimiter.join(header))
print(fname)
def save_df(self, fname):
"""
Save the HAWC2 data and sel file in a DataFrame that contains all the
data, and all the channel information (the one from the sel file
and the parsed from this function)
"""
self.sig
self.ch_details
self.ch_dict
def ReadOutputAtTime(fname):
"""Distributed blade loading as generated by the HAWC2 output_at_time
command. From HAWC2 12.3-beta and onwards, there are 7 header columns,
earlier version only have 3.
Parameters
----------
fname : str
header_lnr : int, default=3
Line number of the header (column names) (1-based counting).
# data = pd.read_fwf(fname, skiprows=3, header=None)
# pd.read_table(fname, sep=' ', skiprows=3)
# data.index.names = cols
# because the formatting is really weird, we need to sanatize it a bit
with opent(fname, 'r') as f:
# read the header from line 3
for k in range(7):
line = f.readline()
if line[0:12].lower().replace('#', '').strip() == 'radius_s':
header_lnr = k + 1
break
header = line.replace('\r', '').replace('\n', '')
cols = [k.strip().replace(' ', '_') for k in header.split('#')[1:]]
data = np.loadtxt(fname, skiprows=header_lnr)
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
return pd.DataFrame(data, columns=cols)
def ReadEigenBody(fname, debug=False):
"""
Read HAWC2 body eigenalysis result file
=======================================
Parameters
----------
file_path : str
file_name : str
Returns
-------
results : DataFrame
Columns: body, Fd_hz, Fn_hz, log_decr_pct
"""
# Body data for body number : 3 with the name :nacelle
# Results: fd [Hz] fn [Hz] log.decr [%]
# Mode nr: 1: 1.45388E-21 1.74896E-03 6.28319E+02
FILE = opent(fname)
lines = FILE.readlines()
FILE.close()
df_dict = {'Fd_hz': [], 'Fn_hz': [], 'log_decr_pct': [], 'body': []}
for i, line in enumerate(lines):
if debug: print('line nr: %5i' % i)
# identify for which body we will read the data
if line[:25] == 'Body data for body number':
body = line.split(':')[2].rstrip().lstrip()
# remove any annoying characters
if debug: print('modes for body: %s' % body)
# identify mode number and read the eigenfrequencies
elif line[:8] == 'Mode nr:':
linelist = line.replace('\n', '').replace('\r', '').split(':')
# modenr = linelist[1].rstrip().lstrip()
# text after Mode nr can be empty
try:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
except IndexError:
eigenmodes = ['0', '0', '0']
if debug: print(eigenmodes)
# in case we have more than 3, remove all the empty ones
# this can happen when there are NaN values
if not len(eigenmodes) == 3:
eigenmodes = linelist[2].rstrip().lstrip().split(' ')
eigmod = []
for k in eigenmodes:
if len(k) > 1:
eigmod.append(k)
else:
eigmod = eigenmodes
# remove any trailing spaces for each element
for k in range(len(eigmod)):
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
df_dict['body'].append(body)
df_dict['Fd_hz'].append(eigmod[0])
df_dict['Fn_hz'].append(eigmod[1])
df_dict['log_decr_pct'].append(eigmod[2])
return pd.DataFrame(df_dict)
def ReadEigenStructure(file_path, file_name, debug=False, max_modes=500):
"""
Read HAWC2 structure eigenalysis result file
============================================
The file looks as follows:
#0 Version ID : HAWC2MB 11.3
#1 ___________________________________________________________________
#2 Structure eigenanalysis output
#3 ___________________________________________________________________
#4 Time : 13:46:59
#5 Date : 28:11.2012
#6 ___________________________________________________________________
#7 Results: fd [Hz] fn [Hz] log.decr [%]
#8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
#...
#302 Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
Parameters
----------
file_path : str
file_name : str
debug : boolean, default=False
max_modes : int
Stop evaluating the result after max_modes number of modes have been
identified
Returns
-------
modes_arr : ndarray(3,n)
An ndarray(3,n) holding Fd, Fn [Hz] and the logarithmic damping
decrement [%] for n different structural eigenmodes
"""
# 0 Version ID : HAWC2MB 11.3
# 1 ___________________________________________________________________
# 2 Structure eigenanalysis output
# 3 ___________________________________________________________________
# 4 Time : 13:46:59
# 5 Date : 28:11.2012
# 6 ___________________________________________________________________
# 7 Results: fd [Hz] fn [Hz] log.decr [%]
# 8 Mode nr: 1: 3.58673E+00 3.58688E+00 5.81231E+00
# Mode nr:294: 0.00000E+00 6.72419E+09 6.28319E+02
FILE = opent(os.path.join(file_path, file_name))
lines = FILE.readlines()
FILE.close()
header_lines = 8
# we now the number of modes by having the number of lines
nrofmodes = len(lines) - header_lines
for i, line in enumerate(lines):
if i > max_modes:
# cut off the unused rest
break
# ignore the header
if i < header_lines:
continue
# split up mode nr from the rest
parts = line.split(':')
# get fd, fn and damping, but remove all empty items on the list
modes_arr[:, i-header_lines]=misc.remove_items(parts[2].split(' '), '')
return modes_arr
"""
"""
def __init__(self):
pass
def __call__(self, z_h, r_blade_tip, a_phi=None, shear_exp=None, nr_hor=3,
nr_vert=20, h_ME=500.0, io=None, wdir=None):
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
"""
Parameters
----------
z_h : float
Hub height
r_blade_tip : float
Blade tip radius
a_phi : float, default=None
:math:`a_{\\varphi} \\approx 0.5` parameter for the modified
Ekman veer distribution. Values vary between -1.2 and 0.5.
shear_exp : float, default=None
nr_vert : int, default=3
nr_hor : int, default=20
h_ME : float, default=500
Modified Ekman parameter. Take roughly 500 for off shore sites,
1000 for on shore sites.
io : str or io buffer, default=None
When specified, the HAWC2 user defined shear input file will be
written.
wdir : float, default=None
A constant veer angle, or yaw angle. Equivalent to setting the
wind direction. Angle in degrees.
Returns
-------
uu, vv, ww, xx, zz
"""
x, z = self.create_coords(z_h, r_blade_tip, nr_vert=nr_vert,
nr_hor=nr_hor)
if a_phi is not None:
phi_rad = WindProfiles.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
assert len(phi_rad) == nr_vert
else:
nr_vert = len(z)
phi_rad = np.zeros((nr_vert,))
# add any yaw error on top of
if wdir is not None:
# because wdir cw positive, and phi veer ccw positive
phi_rad -= (wdir*np.pi/180.0)
u, v, w = self.decompose_veer(phi_rad, nr_hor)
# when no shear is defined
if shear_exp is None:
uu = u
vv = v
ww = w
else:
# scale the shear on top of the veer
shear = WindProfiles.powerlaw(z, z_h, shear_exp)
uu = u*shear[:,np.newaxis]
vv = v*shear[:,np.newaxis]
ww = w*shear[:,np.newaxis]
# and write to a file
if isinstance(io, str):
with open(io, 'wb') as fid:
fid = self.write(fid, uu, vv, ww, x, z)
self.fid =None
elif io is not None:
io = self.write(io, uu, vv, ww, x, z)
self.fid = io
return uu, vv, ww, x, z
def create_coords(self, z_h, r_blade_tip, nr_vert=3, nr_hor=20):
"""
Utility to create the coordinates of the wind field based on hub heigth
and blade length. Add 15% to r_blade_tip to make sure horizontal edges
are defined wide enough.
"""
# take 15% extra space after the blade tip
z = np.linspace(0, z_h + r_blade_tip*1.15, nr_vert)
# along the horizontal, coordinates with 0 at the rotor center
x = np.linspace(-r_blade_tip*1.15, r_blade_tip*1.15, nr_hor)
return x, z
def deltaphi2aphi(self, d_phi, z_h, r_blade_tip, h_ME=500.0):
"""For a given `\\Delta \\varphi` over the rotor diameter, estimate
the corresponding `a_{\\varphi}`.
Parameters
----------
`\\Delta \\varphi` : ndarray or float
Veer angle difference over the rotor plane from lowest to highest
blade tip position.
z_h : float
Hub height in meters.
r_blade_tip : float
Blade tip radius/length.
h_ME : float, default=500.0
Modified Ekman parameter. For on shore,
:math:`h_{ME} \\approx 1000`, for off-shore,
:math:`h_{ME} \\approx 500`
Returns
-------
`a_{\\varphi}` : ndarray or float
"""
t1 = r_blade_tip * 2.0 * np.exp(-z_h/(h_ME))
a_phi = d_phi * np.sqrt(h_ME*z_h) / t1
return a_phi
def deltaphi2aphi_opt(self, deltaphi, z, z_h, r_blade_tip, h_ME):
"""
convert delta_phi over a given interval z to a_phi using
scipy.optimize.fsolve on veer_ekman_mod.
Parameters
----------
deltaphi : float
Desired delta phi in rad over interval z[0] at bottom to z[1] at
the top.
def func(a_phi, z, z_h, h_ME, deltaphi_target):
phis = WindProfiles.veer_ekman_mod(z, z_h, h_ME=h_ME, a_phi=a_phi)
return np.abs(deltaphi_target - (phis[1] - phis[0]))
args = (z, z_h, h_ME, deltaphi)
return sp.optimize.fsolve(func, [0], args=args)[0]
def decompose_veer(self, phi_rad, nr_hor):
"""
Convert a veer angle into u, v, and w components, ready for the
HAWC2 user defined veer input file. nr_vert refers to the number of
vertical grid points.
Paramters
---------
phi_rad : ndarray(nr_vert)
veer angle in radians as function of height
nr_hor : int
Number of horizontal grid points
Returns
-------
u : ndarray(nr_hor, nr_vert)
v : ndarray(nr_hor, nr_vert)
w : ndarray(nr_hor, nr_vert)
"""
nr_vert = len(phi_rad)
tan_phi = np.tan(phi_rad)
# convert veer angles to veer components in v, u. Make sure the
# normalized wind speed remains 1!
# u = sympy.Symbol('u')
# v = sympy.Symbol('v')
# tan_phi = sympy.Symbol('tan_phi')
# eq1 = u**2.0 + v**2.0 - 1.0
# eq2 = (tan_phi*u/v) - 1.0
# sol = sympy.solvers.solve([eq1, eq2], [u,v], dict=True)
# # proposed solution is:
# u2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))/tan_phi
# v2 = np.sqrt(tan_phi**2/(tan_phi**2 + 1.0))
# # but that gives the sign switch wrong, simplify/rewrite to:
u = np.sqrt(1.0/(tan_phi**2 + 1.0))
v = np.sqrt(1.0/(tan_phi**2 + 1.0))*tan_phi
# verify they are actually the same but the sign:
# assert np.allclose(np.abs(u), np.abs(u2))
# assert np.allclose(np.abs(v), np.abs(v2))
u_full = u[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
v_full = v[:, np.newaxis] + np.zeros((3,))[np.newaxis, :]
w_full = np.zeros((nr_vert, nr_hor))
return u_full, v_full, w_full
def read(self, fname):
Read a user defined shear input file as used for HAWC2.
Returns
-------
u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
"""
# read the header
with opent(fname) as f:
for i, line in enumerate(f.readlines()):
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
if line.strip()[0] != '#':
nr_v, nr_w = misc.remove_items(line.split('#')[0].split(), '')
nr_hor, nr_vert = int(nr_v), int(nr_w)
i_header = i
break
# u,v and w components on 2D grid
tmp = np.genfromtxt(fname, skip_header=i_header+1, comments='#',
max_rows=nr_vert*3)
if not tmp.shape == (nr_vert*3, nr_hor):
raise AssertionError('user defined shear input file inconsistent')
v_comp = tmp[:nr_vert,:]
u_comp = tmp[nr_vert:nr_vert*2,:]
w_comp = tmp[nr_vert*2:nr_vert*3,:]
# coordinates of the 2D grid
tmp = np.genfromtxt(fname, skip_header=3*(nr_vert+1)+2,
max_rows=nr_hor+nr_vert)
if not tmp.shape == (nr_vert+nr_hor,):
raise AssertionError('user defined shear input file inconsistent')
v_coord = tmp[:nr_hor]
w_coord = tmp[nr_hor:]
phi_deg = np.arctan(v_comp[:, 0]/u_comp[:, 0])*180.0/np.pi
return u_comp, v_comp, w_comp, v_coord, w_coord, phi_deg
def write(self, fid, u, v, w, v_coord, w_coord, fmt_uvw='% 08.05f',
fmt_coord='% 8.02f'):
"""Write a user defined shear input file for HAWC2.
"""
nr_hor = len(v_coord)
nr_vert = len(w_coord)
try:
assert u.shape == v.shape
assert u.shape == w.shape
assert u.shape[0] == nr_vert
assert u.shape[1] == nr_hor
except AssertionError:
raise ValueError('u, v, w shapes should be consistent with '
'nr_hor and nr_vert: u.shape: %s, nr_hor: %i, '
'nr_vert: %i' % (str(u.shape), nr_hor, nr_vert))
fid.write(b'# User defined shear file\n')